Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of G2 checkpoint defect on centromeric instability

Abstract

Centromeric instability is characterized by dynamic formation of centromeric breaks, deletions, isochromosomes and translocations, which are commonly observed in cancer. So far, however, the mechanisms of centromeric instability in cancer cells are still poorly understood. In this study, we tested the hypothesis that G2 checkpoint defect promotes centromeric instability. Our observations from multiple approaches consistently support this hypothesis. We found that overexpression of cyclin B1, one of the pivotal genes driving G2 to M phase transition, impaired G2 checkpoint and promoted the formation of centromeric aberrations in telomerase-immortalized cell lines. Conversely, centromeric instability in cancer cells was ameliorated through reinforcement of G2 checkpoint by cyclin B1 knockdown. Remarkably, treatment with KU55933 for only 2.5 h, which abrogated G2 checkpoint, was sufficient to produce centromeric aberrations. Moreover, centromeric aberrations constituted the major form of structural abnormalities in G2 checkpoint-defective ataxia telangiectasia cells. Statistical analysis showed that the frequencies of centromeric aberrations in G2 checkpoint-defective cells were always significantly overrepresented compared with random assumption. As there are multiple pathways leading to G2 checkpoint defect, our finding offers a broad explanation for the common occurrence of centromeric aberrations in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abraham RT . (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15: 2177–2196.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Beheshti B, Karaskova J, Park PC, Squire JA, Beatty BG . (2000). Identification of a high frequency of chromosomal rearrangements in the centromeric regions of prostate cancer cell lines by sequential giemsa banding and spectral karyotyping. Mol Diagn 5: 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Cheung PY, Deng W, Man C, Tse WW, Srivastava G, Law S et al. (2010). Genetic alterations in a telomerase-immortalized human esophageal epithelial cell line: implications for carcinogenesis. Cancer Lett 293: 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Deckbar D, Birraux J, Krempler A, Tchouandong L, Beucher A, Walker S et al. (2007). Chromosome breakage after G2 checkpoint release. J Cell Biol 176: 749–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng W, Tsao SW, Guan XY, Cheung AL . (2007). Microtubule breakage is not a major mechanism for resolving end-to-end chromosome fusions generated by telomere dysfunction during the early process of immortalization. Chromosoma 116: 557–568.

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Tsao SW, Kwok YK, Wong E, Huang XR, Liu S et al. (2008). Transforming growth factor beta1 promotes chromosomal instability in human papillomavirus 16 E6E7-infected cervical epithelial cells. Cancer Res 68: 7200–7209.

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Tsao SW, Lucas JN, Leung CS, Cheung AL . (2003). A new method for improving metaphase chromosome spreading. Cytometry A 51: 46–51.

    Article  PubMed  Google Scholar 

  • Dillon N, Festenstein R . (2002). Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 18: 252–258.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M . (2002). DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J Nutr 132: 2424S–2429S.

    Article  CAS  PubMed  Google Scholar 

  • Eichler EE, Sankoff D . (2003). Structural dynamics of eukaryotic chromosome evolution. Science 301: 793–797.

    Article  CAS  PubMed  Google Scholar 

  • Glaser R, Zhang HY, Yao KT, Zhu HC, Wang FX, Li GY et al. (1989). Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci USA 86: 9524–9528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Innocente SA, Abrahamson JL, Cogswell JP, Lee JM . (1999). p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96: 2147–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Takeda T, Sakon M, Monden M, Tsujimoto M, Matsuura N . (2000). Expression and prognostic role of cyclin-dependent kinase 1 (cdc2) in hepatocellular carcinoma. Oncology 59: 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Mertens F, Jin C, Akervall J, Wennerberg J, Gorunova L et al. (1995). Nonrandom chromosome abnormalities in short-term cultured primary squamous cell carcinomas of the head and neck. Cancer Res 55: 3204–3210.

    CAS  PubMed  Google Scholar 

  • Johansson M, Jin Y, Mandahl N, Hambraeus G, Johansson L, Mitelman F et al. (1995). Cytogenetic analysis of short-term cultured squamous cell carcinomas of the lung. Cancer Genet Cytogenet 81: 46–55.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann WK, Schwartz JL, Hurt JC, Byrd LL, Galloway DA, Levedakou E et al. (1997). Inactivation of G2 checkpoint function and chromosomal destabilization are linked in human fibroblasts expressing human papillomavirus type 16 E6. Cell Growth Differ 8: 1105–1114.

    CAS  PubMed  Google Scholar 

  • Kojis TL, Schreck RR, Gatti RA, Sparkes RS . (1989). Tissue specificity of chromosomal rearrangements in ataxia-telangiectasia. Hum Genet 83: 347–352.

    Article  CAS  PubMed  Google Scholar 

  • Leach TJ, Chotkowski HL, Wotring MG, Dilwith RL, Glaser RL . (2000). Replication of heterochromatin and structure of polytene chromosomes. Mol Cell Biol 20: 6308–6316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HM, Man C, Jin Y, Deng W, Yip YL, Feng HC et al. (2006). Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase. Int J Cancer 119: 1567–1576.

    Article  CAS  PubMed  Google Scholar 

  • Lobrich M, Jeggo PA . (2007). The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7: 861–869.

    Article  PubMed  Google Scholar 

  • Nakamura N, Yamamoto H, Yao T, Oda Y, Nishiyama K, Imamura M et al. (2005). Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum Pathol 36: 828–837.

    Article  CAS  PubMed  Google Scholar 

  • Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D, Zhang H, Ghadimi BM, Macville M et al. (2001). Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer 30: 349–363.

    Article  CAS  PubMed  Google Scholar 

  • Pandita TK . (2002). ATM function and telomere stability. Oncogene 21: 611–618.

    Article  CAS  PubMed  Google Scholar 

  • Perrod S, Gasser SM . (2003). Long-range silencing and position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci 60: 2303–2318.

    Article  CAS  PubMed  Google Scholar 

  • Pincheira J, Lopez-Saez JF . (1991). Effects of caffeine and cycloheximide during G2 prophase in control and X-ray-irradiated human lymphocytes. Mutat Res 251: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Rainey MD, Charlton ME, Stanton RV, Kastan MB . (2008). Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 68: 7466–7474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santana C, Ortega E, Garcia-Carranca A . (2002). Oncogenic H-ras induces cyclin B1 expression in a p53-independent manner. Mutat Res 508: 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Stewenius Y, Gorunova L, Jonson T, Larsson N, Hoglund M, Mandahl N et al. (2005). Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. Proc Natl Acad Sci USA 102: 5541–5546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struski S, Doco-Fenzy M, Cornillet-Lefebvre P . (2002). Compilation of published comparative genomic hybridization studies. Cancer Genet Cytogenet 135: 63–90.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Urano T, Miki Y, Moriya T, Akahira J, Ishida T et al. (2007). Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci 98: 644–651.

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Sabe H, Hata A, Inazu T, Homma Y, Nukada T et al. (1994). Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J 13: 1341–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeno S, Noguchi T, Kikuchi R, Uchida Y, Yokoyama S, Muller W . (2002). Prognostic value of cyclin B1 in patients with esophageal squamous cell carcinoma. Cancer 94: 2874–2881.

    Article  CAS  PubMed  Google Scholar 

  • Tang JC, Wan TS, Wong N, Pang E, Lam KY, Law SY et al. (2001). Establishment and characterization of a new xenograft-derived human esophageal squamous cell carcinoma cell line SLMT-1 of Chinese origin. Cancer Genet Cytogenet 124: 36–41.

    Article  CAS  PubMed  Google Scholar 

  • Terzoudi GI, Manola KN, Pantelias GE, Iliakis G . (2005). Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res 65: 11292–11296.

    Article  CAS  PubMed  Google Scholar 

  • White JS, Choi S, Bakkenist CJ . (2008). Irreversible chromosome damage accumulates rapidly in the absence of ATM kinase activity. Cell Cycle 7: 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  • Wong N, Lai P, Pang E, Leung TW, Lau JW, Johnson PJ . (2000). A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology 32: 1060–1068.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Kim ST, Lim DS, Kastan MB . (2002). Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22: 1049–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin XY, Grove L, Datta NS, Katula K, Long MW, Prochownik EV . (2001). Inverse regulation of cyclin B1 by c-Myc and p53 and induction of tetraploidy by cyclin B1 overexpression. Cancer Res 61: 6487–6493.

    CAS  PubMed  Google Scholar 

  • Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H . (2004). The clinical significance of Cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 15: 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Ma MS, Zhao RZ, Li MY . (1995). Centromere spreading and centromeric aberrations in ovarian tumors. Cancer Genet Cytogenet 80: 63–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Prochownik, Children's Hospital of Pittsburgh, Pittsburgh, PA, for the kind gift of pApuro-CyclinB1 plasmids, and Department of Pediatrics and Adolescent Medicine, The University of Hong Kong for use of SKY facilities. We also thank Dr JC Tang (Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University) and Professor G Srivastava (Department of Pathology, The University of Hong Kong) for the SLMT-1 cell line, and Dr R Glaser (Department of Medical Microbiology and Immunology, Ohio State University Medical Center) for the HNE-1 cell line; T Chan, PY Cheung, CS Leung, P Mak, J Cheung, A Li and B Lai for technical assistance. This study was supported by a grant from the Research Grants Council of Hong Kong Special Administrative Region, China, Project No. HKU 7556/06M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L M Cheung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Tsao, S., Mak, G. et al. Impact of G2 checkpoint defect on centromeric instability. Oncogene 30, 1281–1289 (2011). https://doi.org/10.1038/onc.2010.508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.508

Keywords

This article is cited by

Search

Quick links