Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome

Abstract

Tumor growth factor-β (TGF-β) signaling in cancer has been implicated in growth suppression of early lesions and enhancing tumor cell invasion and metastasis. However, the cellular mechanisms that determine this signaling output in individual tumors are still largely unknown. In endothelial cells, TGF-β signaling is modulated by the TGF-β co-receptor endoglin (CD105). Here we demonstrate that endoglin is expressed in a subset of invasive breast cancers and cell lines and is subject to epigenetic silencing by gene methylation. Endoglin downregulation in non-tumorigenic MCF10A breast cells leads to the formation of abnormal acini in 3D culture, but does not promote cell migration or transformation. In contrast, in the presence of activated ErbB2, endoglin downregulation in MCF10A cells leads to enhanced invasion into a 3D matrix. Consistent with these data, ectopic expression of endoglin in MDA-MB-231 cells blocks TGF-β-enhanced cell motility and invasion and reduces lung colonization in an in vivo metastasis model. Unlike endothelial cells, endoglin does not modulate Smad-mediated TGF-β signaling in breast cells but attenuates the cytoskeletal remodeling to impair cell migration and invasion. Importantly, in a large cohort of invasive breast cancers, lack of endoglin expression in the tumor cell compartment correlates with ENG gene methylation and poor clinical outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al. (2006). Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8: 1235–1245.

    Article  CAS  PubMed  Google Scholar 

  • Barbara NP, Wrana JL, Letarte M . (1999). Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274: 584–594.

    Article  CAS  PubMed  Google Scholar 

  • Bernabeu C, Conley BA, Vary CP . (2007). Novel biochemical pathways of endoglin in vascular cell physiology. J Cell Biochem 102: 1375–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernabeu C, Lopez-Novoa JM, Quintanilla M . (2009). The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta 1792: 954–973.

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12: 27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheifetz S, Bellon T, Cales C, Vera S, Bernabeu C, Massague J et al. (1992). Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267: 19027–19030.

    CAS  PubMed  Google Scholar 

  • Conley BA, Koleva R, Smith JD, Kacer D, Zhang D, Bernabeu C et al. (2004). Endoglin controls cell migration and composition of focal adhesions: function of the cytosolic domain. J Biol Chem 279: 27440–27449.

    Article  CAS  PubMed  Google Scholar 

  • Craft CS, Romero D, Vary CP, Bergan RC . (2007). Endoglin inhibits prostate cancer motility via activation of the ALK2-Smad1 pathway. Oncogene 26: 7240–7250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath J, Brugge JS . (2005). Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5: 675–688.

    Article  CAS  PubMed  Google Scholar 

  • Feng XH, Derynck R . (2005). Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21: 659–693.

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C . (2002). Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 277: 29197–29209.

    Article  CAS  PubMed  Google Scholar 

  • Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S et al. (2006). Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5: 2606–2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illingworth RS, Bird AP . (2009). CpG islands—‘a rough guide’. FEBS Lett 583: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi O, Ikegame M, Takizawa F, Yoshizawa T, Moksed MA, Iizawa F et al. (2010). Endoglin is involved in BMP-2-induced osteogenic differentiation of periodontal ligament cells through a pathway independent of Smad-1/5/8 phosphorylation. J Cell Physiol 222: 465–473.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ et al. (1996). Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13: 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Klingbeil P, Natrajan R, Everitt G, Vatcheva R, Marchio C, Palacios J et al. (2010). CD44 is overexpressed in basal-like breast cancers but is not a driver of 11p13 amplification. Breast Cancer Res Treat 120: 95–109.

    Article  CAS  PubMed  Google Scholar 

  • Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M et al. (2004). Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. Embo J 23: 4018–4028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee NY, Blobe GC . (2007). The interaction of endoglin with beta-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem 282: 21507–21517.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (2008). TGFbeta in Cancer. Cell 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE et al. (1994). Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8: 345–351.

    Article  CAS  PubMed  Google Scholar 

  • Moustakas A, Heldin CH . (2005). Non-Smad TGF-beta signals. J Cell Sci 118: 3573–3584.

    Article  CAS  PubMed  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mythreye K, Blobe GC . (2009). The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 106: 8221–8226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oxmann D, Held-Feindt J, Stark AM, Hattermann K, Yoneda T, Mentlein R . (2008). Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27: 3567–3575.

    Article  CAS  PubMed  Google Scholar 

  • Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL . (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307: 1603–1609.

    Article  CAS  PubMed  Google Scholar 

  • Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al. (2008). TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133: 66–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Gomez E, Villa-Morales M, Santos J, Fernandez-Piqueras J, Gamallo C, Dotor J et al. (2007). A role for endoglin as a suppressor of malignancy during mouse skin carcinogenesis. Cancer Res 67: 10268–10277.

    Article  CAS  PubMed  Google Scholar 

  • Quintanilla M, Ramirez JR, Perez-Gomez E, Romero D, Velasco B, Letarte M et al. (2003). Expression of the TGF-beta coreceptor endoglin in epidermal keratinocytes and its dual role in multistage mouse skin carcinogenesis. Oncogene 22: 5976–5985.

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Wakefield LM . (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621–8623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Barbero A, Obreo J, Alvarez-Munoz P, Pandiella A, Bernabeu C, Lopez-Novoa JM . (2006). Endoglin modulation of TGF-beta1-induced collagen synthesis is dependent on ERK1/2 MAPK activation. Cell Physiol Biochem 18: 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC et al. (2010). Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 31: 359–366.

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Rodriguez F, Guerrero-Esteo M, Botella LM, Banville D, Vary CP, Bernabeu C . (2004). Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem 279: 32858–32868.

    Article  CAS  PubMed  Google Scholar 

  • Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L et al. (2007). BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120: 964–972.

    Article  CAS  PubMed  Google Scholar 

  • Scherner O, Meurer SK, Tihaa L, Gressner AM, Weiskirchen R . (2007). Endoglin differentially modulates antagonistic transforming growth factor-beta1 and BMP-7 signaling. J Biol Chem 282: 13934–13943.

    Article  CAS  PubMed  Google Scholar 

  • Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK et al. (2004). Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 101: 1257–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  • ten Dijke P, Goumans MJ, Pardali E . (2008). Endoglin in angiogenesis and vascular diseases. Angiogenesis 11: 79–89.

    Article  PubMed  Google Scholar 

  • Webb DJ, Parsons JT, Horwitz AF . (2002). Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nat Cell Biol 4: E97–100.

    Article  CAS  PubMed  Google Scholar 

  • Wong VC, Chan PL, Bernabeu C, Law S, Wang LD, Li JL et al. (2008). Identification of an invasion and tumor-suppressing gene, Endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma. Int J Cancer 123: 2816–2823.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YE . (2009). Non-Smad pathways in TGF-beta signaling. Cell Res 19: 128–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kay Savage and Suzanne Parry for immunohistochemical staining, Reshma Shah for help with the methylation analysis, Caterina Marchio for microdissection, Senthil Muthuswamy for the MCF10A.ErbB2 cells and Ariad Pharmaceuticals (www.ariad.com/regulationkits) for the AP1510 reagent. This project was funded by Breakthrough Breast Cancer and from NHS funding to the NIHR Biomedical Research Centre, a Marie Curie Intra-European Fellowship (PIEF-GA-2008-221083) and Breast Cancer Research Scotland with support from the Tayside Tissue Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Isacke.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, L., Johnson, D., Sarrió, D. et al. Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene 30, 1046–1058 (2011). https://doi.org/10.1038/onc.2010.488

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.488

Keywords

This article is cited by

Search

Quick links