Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of mixed lineage kinase 3 is required for Neurofibromatosis-2-mediated growth suppression in human cancer

Abstract

The Neurofibromatosis-2 (NF2) tumor suppressor merlin negatively regulates cell proliferation in numerous cell types. We have previously shown that the NF2 protein (merlin/schwannomin) associates with mixed lineage kinase 3 (MLK3), a mitogen-activated protein kinase (MAPK) kinase kinase that is required for the proliferation of normal and neoplastic cells. In this study, we show that merlin inhibits MLK3 activity, as well as the activation of its downstream effectors, B-Raf, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). The ability of merlin to regulate MLK3 activity requires a direct association between MLK3 and residues in the C-terminal region of merlin. Merlin integrates Rho GTPase family signaling with MAPK activity by inhibiting the binding between MLK3 and its upstream activator, Cdc42. Furthermore, we demonstrate that MLK3 is required for merlin-mediated suppression of cell proliferation and invasion. Collectively, these results establish merlin as a potent inhibitor of MLK3, ERK and JNK activation in cancer, and provide a mechanistic link between deregulated MAPK and Rho GTPase signaling in NF2 growth control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Chadee DN, Kyriakis JM . (2004a). A novel role for mixed lineage kinase 3 (MLK3) in B-Raf activation and cell proliferation. Cell Cycle 3: 1227–1229.

    Article  CAS  Google Scholar 

  • Chadee DN, Kyriakis JM . (2004b). MLK3 is required for mitogen activation of B-Raf, ERK and cell proliferation. Nat Cell Biol 6: 770–776.

    Article  CAS  Google Scholar 

  • Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z et al. (2006). Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 103: 4463–4468.

    Article  CAS  Google Scholar 

  • Chadee DN, Yuasa T, Kyriakis JM . (2002). Direct activation of mitogen-activated protein kinase kinase kinase MEKK1 by the Ste20p homologue GCK and the adapter protein TRAF2. Mol Cell Biol 22: 737–749.

    Article  CAS  Google Scholar 

  • Cho YY, Bode AM, Mizuno H, Choi BY, Choi HS, Dong Z . (2004). A novel role for mixed-lineage kinase-like mitogen-activated protein triple kinase alpha in neoplastic cell transformation and tumor development. Cancer Res 64: 3855–3864.

    Article  CAS  Google Scholar 

  • Du Y, Bock BC, Schachter KA, Chao M, Gallo KA . (2005). Cdc42 induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. J Biol Chem 280: 42984–42993.

    Article  CAS  Google Scholar 

  • Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E et al. (2002). Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31: 354–362.

    Article  CAS  Google Scholar 

  • Fraenzer JT, Pan H, Minimo Jr L, Smith GM, Knauer D, Hung G . (2003). Overexpression of the NF2 gene inhibits schwannoma cell proliferation through promoting PDGFR degradation. Int J Oncol 23: 1493–1500.

    CAS  PubMed  Google Scholar 

  • Gallo KA, Johnson GL . (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 3: 663–672.

    Article  CAS  Google Scholar 

  • Gollob JA, Wilhelm S, Carter C, Kelley SL . (2006). Role of Raf kinase in cancer: therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin Oncol 33: 392–406.

    Article  CAS  Google Scholar 

  • Gonzalez-Agosti C, Wiederhold T, Herndon ME, Gusella J, Ramesh V . (1999). Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J Biol Chem 274: 34438–34442.

    Article  CAS  Google Scholar 

  • Goutebroze L, Brault E, Muchardt C, Camonis J, Thomas G . (2000). Cloning and characterization of SCHIP-1, a novel protein interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol Cell Biol 20: 1699–1712.

    Article  CAS  Google Scholar 

  • Gutmann DH, Haipek CA, Burke SP, Sun CX, Scoles DR, Pulst SM . (2001). The NF2 interactor, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), associates with merlin in the ‘open’ conformation and suppresses cell growth and motility. Hum Mol Genet 10: 825–834.

    Article  CAS  Google Scholar 

  • Hartkamp J, Troppmair J, Rapp UR . (1999). The JNK/SAPK activator mixed lineage kinase 3 (MLK3) transforms NIH 3T3 cells in a MEK-dependent fashion. Cancer Res 59: 2195–2202.

    CAS  PubMed  Google Scholar 

  • Hung G, Li X, Faudoa R, Xeu Z, Kluwe L, Rhim JS et al. (2002). Establishment and characterization of a schwannoma cell line from a patient with neurofibromatosis 2. Int J Oncol 20: 475–482.

    CAS  PubMed  Google Scholar 

  • Ikeda K, Saeki Y, Gonzalez-Agosti C, Ramesh V, Chiocca EA . (1999). Inhibition of NF2-negative and NF2-positive primary human meningioma cell proliferation by overexpression of merlin due to vector-mediated gene transfer. J Neurosurg 91: 85–92.

    Article  CAS  Google Scholar 

  • Jannatipour M, Dion P, Khan S, Jindal H, Fan X, Laganiere J et al. (2001). Schwannomin isoform-1 interacts with syntenin via PDZ domains. J Biol Chem 276: 33093–33100.

    Article  CAS  Google Scholar 

  • Jin H, Sperka T, Herrlich P, Morrison H . (2006). Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 442: 576–579.

    Article  CAS  Google Scholar 

  • Khatlani TS, Wislez M, Sun M, Srinivas H, Iwanaga K, Ma L et al. (2007). c-Jun N-terminal kinase is activated in non-small-cell lung cancer and promotes neoplastic transformation in human bronchial epithelial cells. Oncogene 26: 2658–2666.

    Article  CAS  Google Scholar 

  • Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T . (2003). Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 12: 841–849.

    Article  CAS  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    Article  CAS  Google Scholar 

  • Lee JY, Moon HJ, Lee WK, Chun HJ, Han CW, Jeon YW et al. (2006). Merlin facilitates ubiquitination and degradation of transactivation-responsive RNA-binding protein. Oncogene 25: 1143–1152.

    Article  CAS  Google Scholar 

  • Leung IW, Lassam N . (2001). The kinase activation loop is the key to mixed lineage kinase-3 activation via both autophosphorylation and hematopoietic progenitor kinase 1 phosphorylation. J Biol Chem 276: 1961–1967.

    Article  CAS  Google Scholar 

  • Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A et al. (2004). A genetically defined model for human ovarian cancer. Cancer Res 64: 1655–1663.

    Article  CAS  Google Scholar 

  • Lutchman M, Rouleau GA . (1995). The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res 55: 2270–2274.

    CAS  PubMed  Google Scholar 

  • McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T . (1997). The Nf2 tumor suppressor gene product is essential for extra-embryonic development immediately prior to gastrulation. Genes Dev 11: 1253–1265.

    Article  CAS  Google Scholar 

  • Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA et al. (2001). The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15: 968–980.

    Article  CAS  Google Scholar 

  • Morrison H, Sperka T, Manent J, Giovannini M, Ponta H, Herrlich P . (2007). Merlin/neurofibromatosis type 2 suppresses growth by inhibiting the activation of Ras and Rac. Cancer Res 67: 520–527.

    Article  CAS  Google Scholar 

  • Obremski VJ, Hall AM, Fernandez-Valle C . (1998). Merlin, the neurofibromatosis type 2 gene product, and beta1 integrin associate in isolated and differentiating Schwann cells. J Neurobiol 37: 487–501.

    Article  CAS  Google Scholar 

  • Okada T, Lopez-Lago M, Giancotti FG . (2005). Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171: 361–371.

    Article  CAS  Google Scholar 

  • Poulikakos PI, Xiao GH, Gallagher R, Jablonski S, Jhanwar SC, Testa JR . (2006). Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene 25: 5960–5968.

    Article  CAS  Google Scholar 

  • Ramesh V . (2004). Merlin and the ERM proteins in Schwann cells, neurons and growth cones. Nat Rev Neurosci 5: 462–470.

    Article  CAS  Google Scholar 

  • Rana A, Gallo K, Godowski P, Hirai S, Ohno S, Zon L et al. (1996). The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem 271: 19025–19028.

    Article  CAS  Google Scholar 

  • Reed N, Gutmann DH . (2001). Tumorigenesis in neurofibromatosis: new insights and potential therapies. Trends Mol Med 7: 157–162.

    Article  CAS  Google Scholar 

  • Rennefahrt U, Illert B, Greiner A, Rapp UR, Troppmair J . (2004). Tumor induction by activated JNK occurs through deregulation of cellular growth. Cancer Lett 215: 113–124.

    Article  CAS  Google Scholar 

  • Rennefahrt UE, Illert B, Kerkhoff E, Troppmair J, Rapp UR . (2002). Constitutive JNK activation in NIH 3T3 fibroblasts induces a partially transformed phenotype. J Biol Chem 277: 29510–29518.

    Article  CAS  Google Scholar 

  • Rong R, Surace EI, Haipek CA, Gutmann DH, Ye K . (2004). Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 23: 8447–8454.

    Article  CAS  Google Scholar 

  • Scoles DR, Huynh DP, Chen MS, Burke SP, Gutmann DH, Pulst SM . (2000). The neurofibromatosis 2 tumor suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate. Hum Mol Genet 9: 1567–1574.

    Article  CAS  Google Scholar 

  • Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I et al. (2001). The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 1: 63–72.

    Article  CAS  Google Scholar 

  • Sherman L, Xu HM, Geist RT, Saporito-Irwin S, Howells N, Ponta H et al. (1997). Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15: 2505–2509.

    Article  CAS  Google Scholar 

  • Sun CX, Robb VA, Gutmann DH . (2002). Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Sci 115: 3991–4000.

    Article  CAS  Google Scholar 

  • Teramoto H, Coso OA, Miyata H, Igishi T, Miki T, Gutkind JS . (1996). Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 271: 27225–27228.

    Article  CAS  Google Scholar 

  • Vacratsis PO, Gallo KA . (2000). Zipper-mediated oligomerization of the mixed lineage kinase SPRK/MLK-3 is not required for its activation by the GTPase cdc 42 but Is necessary for its activation of the JNK pathway. Monomeric SPRK L410P does not catalyze the activating phosphorylation of Thr258 of murine MITOGEN-ACTIVATED protein kinase kinase 4. J Biol Chem 275: 27893–27900.

    CAS  PubMed  Google Scholar 

  • Velho S, Oliveira C, Paredes J, Sousa S, Leite M, Matos P et al. (2010). Mixed lineage kinase 3 gene mutations in mismatch repair deficient gastrointestinal tumours. Hum Mol Genet 19: 697–706.

    Article  CAS  Google Scholar 

  • Xiao GH, Gallagher R, Shetler J, Skele K, Altomare DA, Pestell RG et al. (2005). The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 25: 2384–2394.

    Article  CAS  Google Scholar 

  • Zhang H, Gallo KA . (2001). Autoinhibition of mixed lineage kinase 3 through its Src homology 3 domain. J Biol Chem 276: 45598–45603.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr J Kyriakis for the FLAG-Cdc42 constructs and Dr D Lim for HEI193 cells. This work was supported by National Institutes of Health Grant 1 R15 CA132006-01 and by an American Cancer Society (Ohio Division) grant (to D.N.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Chadee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, Y., Modi, N., Stewart, A. et al. Regulation of mixed lineage kinase 3 is required for Neurofibromatosis-2-mediated growth suppression in human cancer. Oncogene 30, 781–789 (2011). https://doi.org/10.1038/onc.2010.453

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.453

Keywords

This article is cited by

Search

Quick links