Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach

Abstract

Oncofetal genes are expressed in embryos or fetuses, are downregulated or undetectable in adult tissues, and then re-expressed in tumors. Known oncofetal genes, such as AFP, GCB, FGF18, IMP-1 and SOX1, often have important clinical applications or pivotal biological functions. To find new oncofetal-like genes, we used the public information of expressed sequence tags to systematically analyze gene expression patterns and identified a novel oncofetal-like gene, LRRC16B. It increased the proliferation, anchorage-independent growth and tumorigenesis of transformed cells in xenografts, possibly through its effects on cyclin B1 protein levels. These findings exemplify the feasibility of using bioinformatics to find new oncofetal-like genes and suggest that more genes with important functional roles will be uncovered in the candidate gene list.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 6
Figure 5
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adachi-Yamada T, Harumoto T, Sakurai K, Ueda R, Saigo K, O'Connor MB et al. (2005). Wing-to-leg homeosis by spineless causes apoptosis regulated by Fish-lips, a novel leucine-rich repeat transmembrane protein. Mol Cell Biol 25: 3140–3150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander P . (1970). Mechanism of growth and dissemination of antigenic tumors in normal immunological carriers. Medicina (B Aires) 30: 176–183.

    CAS  Google Scholar 

  • Aouacheria A, Navratil V, Barthelaix A, Mouchiroud D, Gautier C . (2006). Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues. BMC Genom 7: 94.

    Article  Google Scholar 

  • Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457: 608–611.

    Article  CAS  PubMed  Google Scholar 

  • Bergstrand CG, Czar B . (1956). Demonstration of a new protein fraction in serum from the human fetus. Scand J Clin Lab Invest 8: 174.

    Article  CAS  PubMed  Google Scholar 

  • Boguski MS, Schuler GD . (1995). Establishing a human transcript map. Nat Genet 10: 369–371.

    Article  CAS  PubMed  Google Scholar 

  • Boiani M, Scholer HR . (2005). Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6: 872–884.

    Article  CAS  PubMed  Google Scholar 

  • Campagne F, Skrabanek L . (2006). Mining expressed sequence tags identifies cancer markers of clinical interest. BMC Bioinform 7: 481.

    Article  Google Scholar 

  • Chen CM, Kraut N, Groudine M, Weintraub H . (1996). I-mf, a novel myogenic repressor, interacts with members of the MyoD family. Cell 86: 731–741.

    Article  CAS  PubMed  Google Scholar 

  • Cleynen I, Brants JR, Peeters K, Deckers R, Debiec-Rychter M, Sciot R et al. (2007). HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol Cancer Res 5: 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Colantuoni C, Purcell AE, Bouton CM, Pevsner J . (2000). High throughput analysis of gene expression in the human brain. J Neurosci Res 59: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Cowin AJ, Adams DH, Strudwick XL, Chan H, Hooper JA, Sander GR et al. (2007). Flightless I deficiency enhances wound repair by increasing cell migration and proliferation. J Pathol 211: 572–581.

    Article  CAS  PubMed  Google Scholar 

  • Dao DY, Yang X, Chen D, Zuscik M, O'Keefe RJ . (2007). Axin1 and Axin2 are regulated by TGF- and mediate cross-talk between TGF- and Wnt signaling pathways. Ann N Y Acad Sci 1116: 82–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Schultz PG . (2004). A role for chemistry in stem cell biology. Nat Biotechnol 22: 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Eisenmann KM, Harris ES, Kitchen SM, Holman HA, Higgs HN, Alberts AS . (2007). Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 17: 579–591.

    Article  CAS  PubMed  Google Scholar 

  • Esteve P, Bovolenta P . (2006). Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr Opin Neurobiol 16: 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Farghaly SA . (1992). Tumor markers in gynecologic cancer. Gynecol Obstet Invest 34: 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Fukada M, Watakabe I, Yuasa-Kawada J, Kawachi H, Kuroiwa A, Matsuda Y et al. (2000). Molecular characterization of CRMP5, a novel member of the collapsin response mediator rotein family. J Biol Chem 275: 37957–37965.

    Article  CAS  PubMed  Google Scholar 

  • Gabory A, Ripoche MA, Yoshimizu T, Dandolo L . (2006). The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res 113: 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Barcelo MM, Lau DK, Ngan ES, Leon TY, Liu TT, So MT et al. (2007). Evaluation of the thyroid transcription factor-1 gene (TITF1) as a Hirschsprung's disease locus. Ann Hum Genet 71: 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Gilboa E . (1999). How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 48: 382–385.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • Grozdanov PN, Yovchev MI, Dabeva MD . (2006). The oncofetal protein glypican-3 is a novel marker of hepatic progenitor/oval cells. Lab Invest 86: 1272–1284.

    Article  CAS  PubMed  Google Scholar 

  • Hishinuma M, Ohashi KI, Yamauchi N, Kashima T, Uozaki H, Ota S et al. (2006). Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology 49: 479–486.

    Article  CAS  PubMed  Google Scholar 

  • Hossain MS, Ozaki T, Wang H, Nakagawa A, Takenobu H, Ohira M et al. (2008). N-MYC promotes cell proliferation through a direct transactivation of neuronal leucine-rich repeat protein-1 (NLRR1) gene in neuroblastoma. Oncogene 27: 6075–6082.

    Article  CAS  PubMed  Google Scholar 

  • Imamura F, Nagao H, Naritsuka H, Murata Y, Taniguchi H, Mori K . (2006). A leucine-rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb. J Comp Neurol 495: 754–768.

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Hayama S, Yamabuki T, Ishikawa N, Miyamoto M, Ito T et al. (2007). Increased expression of insulin-like growth factor-II messenger RNA-binding protein 1 is associated with tumor progression in patients with lung cancer. Clin Cancer Res 13: 434–442.

    Article  CAS  PubMed  Google Scholar 

  • Katoh M . (2007). Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 3: 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Katoh M, Katoh M . (2007). WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates. Int J Mol Med 19: 197–201.

    CAS  PubMed  Google Scholar 

  • Kobe B, Kajava AV . (2001). The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11: 725–732.

    Article  CAS  PubMed  Google Scholar 

  • Kopecki Z, Cowin AJ . (2008). Flightless I: an actin-remodelling protein and an important negative regulator of wound repair. Int J Biochem Cell Biol 40: 1415–1419.

    Article  CAS  PubMed  Google Scholar 

  • Kutay U, Guttinger S . (2005). Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol 15: 121–124.

    Article  CAS  PubMed  Google Scholar 

  • Liu CI, Cheng TL, Chen SZ, Huang YC, Chang WT . (2005). LrrA, a novel leucine-rich repeat protein involved in cytoskeleton remodeling, is required for multicellular morphogenesis in Dictyostelium discoideum. Dev Biol 285: 238–251.

    Article  CAS  PubMed  Google Scholar 

  • Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A et al. (2007). The H19 non-coding RNA is essential for human tumor growth. PLoS ONE 2: e845.

    Article  PubMed  PubMed Central  Google Scholar 

  • McNamee D . (1995). Beta-hCG inhibits Kaposi's sarcoma. Lancet 345: 1169.

    Article  CAS  PubMed  Google Scholar 

  • Monk M, Holding C . (2001). Human embryonic genes re-expressed in cancer cells. Oncogene 20: 8085–8091.

    Article  CAS  PubMed  Google Scholar 

  • Morton JP, Mongeau ME, Klimstra DS, Morris JP, Lee YC, Kawaguchi Y et al. (2007). Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc Natl Acad Sci USA 104: 5103–5108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC . (1999). A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19: 1262–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann H, Carnwath JW, Kues W . (2007). Application of DNA array technology to mammalian embryos. Theriogenology 68 (Suppl 1): S165–S177.

    Article  CAS  PubMed  Google Scholar 

  • Park TJ, Kim JY, Park SH, Kim HS, Lim IK . (2009). Skp2 enhances polyubiquitination and degradation of TIS21/BTG2/PC3, tumor suppressor protein, at the downstream of FoxM1. Exp Cell Res 315: 3152–3162.

    Article  CAS  PubMed  Google Scholar 

  • Qiao M, Iglehart JD, Pardee AB . (2007). Metastatic potential of 21T human breast cancer cells depends on Akt/protein kinase B activation. Cancer Res 67: 5293–5299.

    Article  CAS  PubMed  Google Scholar 

  • Sarandakou A, Protonotariou E, Rizos D . (2007). Tumor markers in biological fluids associated with pregnancy. Crit Rev Clin Lab Sci 44: 151–178.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa T, Furukawa Y, Sakai M, Li M, Miwa N, Lin YM et al (2003). Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res 63: 6116–6120.

    CAS  PubMed  Google Scholar 

  • Sugimori M, Nagao M, Parras CM, Nakatani H, Lebel M, Guillemot F et al. (2008). Ascl1 is required for oligodendrocyte development in the spinal cord. Development 135: 1271–1281.

    Article  CAS  PubMed  Google Scholar 

  • Trojan J, Naval X, Johnson T, Lafarge-Frayssinet C, Hajeri-Germond M, Farges O et al. (1995). Expression of serum albumin and of alphafetoprotein in murine normal and neoplastic primitive embryonic structures. Mol Reprod Dev 42: 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Kaul A, Sperry AO . (2009). TLRR (lrrc67) interacts with PP1 and is associated with a cytoskeletal complex in the testis. Biol Cell 102: 173–189.

    Article  Google Scholar 

  • Xu L, Geman D, Winslow RL . (2007). Large-scale integration of cancer microarray data identifies a robust common cancer signature. BMC Bioinform 8: 275.

    Article  Google Scholar 

Download references

Acknowledgements

This was supported by Grant NSC-95-2320-B-006-057-MY2 from the National Science Council, Taiwan, and Grant DOH99-TD-C-111-003 from the Department of Health, Taiwan. There is no competing financial interest in relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-L Ho.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, CC., Chiang, CW., Cheng, HC. et al. Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene 30, 654–667 (2011). https://doi.org/10.1038/onc.2010.451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.451

Keywords

This article is cited by

Search

Quick links