Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active β-catenin

Abstract

Constitutive activation of Wnt/β-catenin signaling in cancer results from mutations in pathway components, which frequently coexist with autocrine Wnt signaling or epigenetic silencing of extracellular Wnt antagonists. Among the extracellular Wnt inhibitors, the secreted frizzled-related proteins (SFRPs) are decoy receptors that contain soluble Wnt-binding frizzled domains. In addition to SFRPs, other endogenous molecules harboring frizzled motifs bind to and inhibit Wnt signaling. One of such molecules is V3Nter, a soluble SFRP-like frizzled polypeptide that binds to Wnt3a and inhibits Wnt signaling and expression of the β-catenin target genes cyclin D1 and c-myc. V3Nter is derived from the cell surface extracellular matrix component collagen XVIII. Here, we used HCT116 human colon cancer cells carrying the ΔS45 activating mutation in one of the alleles of β-catenin to show that V3Nter and SFRP-1 decrease baseline and Wnt3a-induced β-catenin stabilization. Consequently, V3Nter reduces the growth of human colorectal cancer xenografts by specifically controlling cell proliferation and cell cycle progression, without affecting angiogenesis or apoptosis, as shown by decreased [3H]-thymidine (in vitro) or BrdU (in vivo) incorporation, clonogenesis assays, cell cycle analysis and magnetic resonance imaging in living mice. Additionally, V3Nter switches off the β-catenin target gene expression signature in vivo. Moreover, experiments with β-catenin allele-targeted cells showed that the ΔS45 β-catenin allele hampers, but does not abrogate, inhibition of Wnt signaling by SFRP-1 or by the SFRP-like frizzled domain. Finally, neither SFRP-1 nor V3Nter affect β-catenin signaling in SW480 cells carrying nonfunctional Adenomatous polyposis coli. Thus, SFRP-1 and the SFRP-like molecule V3Nter can inhibit tumor growth of β-catenin-activated tumor cells in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

C18:

collagen XVIII

CRC:

colorectal carcinoma

CRD:

cystein-rich domain

CRT:

β-catenin-T-cell factor-regulated transcription

FZC18:

frizzled module of collagen XVIII

GSEA:

gene set enrichment analysis

HEK293:

human embryonic kidney 293

Nter:

N-terminal

SFRP:

secreted frizzled-related protein

V2:

variant 2

V3:

variant 3

WT:

wild-type

References

  • Ahmed N, Oliva K, Wang Y, Quinn M, Rice G . (2003). Proteomic profiling of proteins associated with urokinase plasminogen activator receptor in a colon cancer cell line using an antisense approach. Proteomics 3: 288–298.

    Article  CAS  PubMed  Google Scholar 

  • Albihn A, Johnsen JI, Henriksson MA . (2010). MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107: 163–224.

    Article  CAS  PubMed  Google Scholar 

  • Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Clevers H . (2006). Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5: 997–1014.

    Article  CAS  PubMed  Google Scholar 

  • Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J . (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121: 737–746.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P et al. (2004). The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 64: 883–888.

    Article  CAS  PubMed  Google Scholar 

  • Chan TA, Wang Z, Dang LH, Vogelstein B, Kinzler KW . (2002). Targeted inactivation of CTNNB1 reveals unexpected effects of beta-catenin mutation. Proc Natl Acad Sci USA 99: 8265–8270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI et al. (2008). Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol 10: 1208–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS . (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28: 3526–3536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ . (2001). Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O et al. (1998). Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95: 8847–8851.

    Article  CAS  PubMed  Google Scholar 

  • DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B . (2007). The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 67: 5371–5379.

    Article  CAS  PubMed  Google Scholar 

  • Dimitriadis A, Vincan E, Mohammed IM, Roczo N, Phillips WA, Baindur-Hudson S . (2001). Expression of Wnt genes in human colon cancers. Cancer Lett 166: 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ et al. (2010). Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 285: 13507–13516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elamaa H, Peterson J, Pihlajaniemi T, Destree O . (2002). Cloning of three variants of type XVIII collagen and their expression patterns during Xenopus laevis development. Mech Dev 114: 109–113.

    Article  CAS  PubMed  Google Scholar 

  • Elamaa H, Snellman A, Rehn M, Autio-Harmainen H, Pihlajaniemi T . (2003). Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Matrix Biol 22: 427–442.

    Article  CAS  PubMed  Google Scholar 

  • Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H et al. (1999). The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9: 207–210.

    Article  CAS  PubMed  Google Scholar 

  • He B, Reguart N, You L, Mazieres J, Xu Z, Lee AY et al. (2005). Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 24: 3054–3058.

    Article  CAS  PubMed  Google Scholar 

  • Holcombe RF, Marsh JL, Waterman ML, Lin F, Milovanovic T, Truong T . (2002). Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol 55: 220–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Dong A, Fernandez-Ruiz V, Shan J, Kawa M, Martinez-Anso E et al. (2009). Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma. Cancer Res 69: 6951–6959.

    Article  CAS  PubMed  Google Scholar 

  • Kawano Y, Kypta R . (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116: 2627–2634.

    Article  CAS  PubMed  Google Scholar 

  • Kenny PA, Enver T, Ashworth A . (2005). Receptor and secreted targets of Wnt-1/beta-catenin signalling in mouse mammary epithelial cells. BMC Cancer 5: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolligs FT, Hu G, Dang CV, Fearon ER . (1999). Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19: 5696–5706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle AH, Huxham LA, Baker JH, Burston HE, Minchinton AI . (2003). Tumor distribution of bromodeoxyuridine-labeled cells is strongly dose dependent. Cancer Res 63: 5707–5711.

    CAS  PubMed  Google Scholar 

  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108: 837–847.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald BT, Tamai K, He X . (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikels AJ, Nusse R . (2006). Wnts as ligands: processing, secretion and reception. Oncogene 25: 7461–7468.

    Article  CAS  PubMed  Google Scholar 

  • Mita AC, Mita MM, Nawrocki ST, Giles FJ . (2008). Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14: 5000–5005.

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  • Munz M, Baeuerle PA, Gires O . (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 69: 5627–5629.

    Article  CAS  PubMed  Google Scholar 

  • Muragaki Y, Timmons S, Griffith CM, Oh SP, Fadel B, Quertermous T et al. (1995). Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci USA 92: 8763–8767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musso O, Theret N, Heljasvaara R, Rehn M, Turlin B, Campion JP et al. (2001). Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen XVIII, in human liver cancers. Hepatology 33: 868–876.

    Article  CAS  PubMed  Google Scholar 

  • Polakis P . (2007). The many ways of Wnt in cancer. Curr Opin Genet Dev 17: 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Quelard D, Lavergne E, Hendaoui I, Elamaa H, Tiirola U, Heljasvaara R et al. (2008). A cryptic frizzled module in cell surface collagen 18 inhibits Wnt/beta-catenin signaling. PLoS ONE 3: e1878.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramanujan S, Koenig GC, Padera TP, Stoll BR, Jain RK . (2000). Local imbalance of proangiogenic and antiangiogenic factors: a potential mechanism of focal necrosis and dormancy in tumors. Cancer Res 60: 1442–1448.

    CAS  PubMed  Google Scholar 

  • Rehn M, Hintikka E, Pihlajaniemi T . (1996). Characterization of the mouse gene for the alpha 1 chain of type XVIII collagen (Col18a1) reveals that the three variant N-terminal polypeptide forms are transcribed from two widely separated promoters. Genomics 32: 436–446.

    Article  CAS  PubMed  Google Scholar 

  • Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T . (1998). The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol 153: 611–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salahshor S, Woodgett JR . (2005). The links between axin and carcinogenesis. J Clin Pathol 58: 225–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18: 1385–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine S, Shibata T, Sakamoto M, Hirohashi S . (2002). Target disruption of the mutant beta-catenin gene in colon cancer cell line HCT116: preservation of its malignant phenotype. Oncogene 21: 5906–5911.

    Article  CAS  PubMed  Google Scholar 

  • Smith K, Bui TD, Poulsom R, Kaklamanis L, Williams G, Harris AL . (1999). Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br J Cancer 81: 496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD et al. (2004). Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Taketo MM . (2004). Shutting down Wnt signal-activated cancer. Nat Genet 36: 320–322.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Hisanaga M, Nagao M, Ikeda N, Fujii H, Koyama F et al. (2004). The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clin Cancer Res 10: 5572–5579.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Tolwinski NS, Wieschaus E . (2004). Rethinking WNT signaling. Trends Genet 20: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y . (2003). Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162: 899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treanor D, Quirke P . (2007). Pathology of colorectal cancer. Clin Oncol (R Coll Radiol) 19: 769–776.

    Article  CAS  Google Scholar 

  • Ueno K, Hiura M, Suehiro Y, Hazama S, Hirata H, Oka M et al. (2008). Frizzled-7 as a potential therapeutic target in colorectal cancer. Neoplasia 10: 697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vider BZ, Zimber A, Chastre E, Prevot S, Gespach C, Estlein D et al. (1996). Evidence for the involvement of the Wnt 2 gene in human colorectal cancer. Oncogene 12: 153–158.

    CAS  PubMed  Google Scholar 

  • Wang Z, Vogelstein B, Kinzler KW . (2003). Phosphorylation of beta-catenin at S33, S37, or T41 can occur in the absence of phosphorylation at T45 in colon cancer cells. Cancer Res 63: 5234–5235.

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang W, Evans PM, Chen X, He X, Liu C . (2006). Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem 281: 17751–17757.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank technical assistance from C Rocher at the Small Animal Imaging Platform, A Fautrel and P Bellaud at the Core HistoPathology Platform, R Le Guével at the ImpactCell Platform, D Le Quilleuc and B Turlin at the Center for Biological Ressources and the animal husbandry group. We are indebted to B Vogelstein, S Bayling and H Suzuki, R Moon, R Nusse, T Pihlajaniemi and J Pouyssegur for generously providing cells, cDNAs or antibodies and to Christine Perret (Institut Cochin, Department Endocrinology, Metabolism and Cancer, Paris, France) for critical reading of the paper. This study was supported by Institut National de la Santé et de la Recherche Médicale, Institut National du Cancer, Agence Nationale de la Recherche (Emergence-BIO Program 2008), Université de Rennes 1, Région Bretagne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Musso.

Ethics declarations

Competing interests

The following authors are coauthors of a patent owned by INSERM (Institut National de la Santé et de la Recherche Médicale) on the therapeutic use of the frizzled module of collagen XVIII: E Lavergne, I Hendaoui, J Leseur, B Clément and O Musso. C Coulouarn, C Ribault, P-A Eliat, S Mebarki and A Corlu declare no potential conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavergne, E., Hendaoui, I., Coulouarn, C. et al. Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active β-catenin. Oncogene 30, 423–433 (2011). https://doi.org/10.1038/onc.2010.432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.432

Keywords

This article is cited by

Search

Quick links