Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxia and cell cycle regulation of the von Hippel–Lindau tumor suppressor

Abstract

Inactivation of von Hippel–Lindau tumor-suppressor protein (pVHL) is associated with von Hippel–Lindau disease, an inherited cancer syndrome, as well as the majority of patients with sporadic clear cell renal cell carcinoma (RCC). Although the involvement of pVHL in oxygen sensing through targeting hypoxia-inducible factor-α subunits to ubiquitin-dependent proteolysis has been well documented, less is known about pVHL regulation under both normoxic and hypoxic conditions. We found that pVHL levels decreased in hypoxia and that hypoxia-induced cell cycle arrest is associated with pVHL expression in RCC cells. pVHL levels fluctuate during the cell cycle, paralleling cyclin B1 levels, with decreased levels in mitosis and G1. pVHL contains consensus destruction (D) box sequences, and pVHL associates with Cdh1, an activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. We show that pVHL has a decreased half-life in G1, Cdh1 downregulation results in increased pVHL expression, whereas Cdh1 overexpression results in decreased pVHL expression. Taken together, these results suggest that pVHL is a novel substrate of APC/CCdh1. D box-independent pVHL degradation was also detected, indicating that other ubiquitin ligases are also activated for pVHL degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Baker DJ, Dawlaty MM, Galardy P, van Deursen JM . (2007). Mitotic regulation of the anaphase-promoting complex. Cell Mol Life Sci 64: 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Beroud C, Collod-Beroud G, Boileau C, Soussi T, Junien C . (2000). UMD (universal mutation database): a generic software to build and analyze locus-specific databases. Hum Mutat 15: 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim A et al. (2006). Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3: e47.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Paulsen N, Brychzy A, Fournier MC, Klausner RD, Gnarra JR, Pause A et al. (2001). Role of transforming growth factor-alpha in von Hippel--Lindau (VHL)(-/-) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci USA 98: 1387–1392.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshaies RJ, Joazeiro CA . (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem 78: 399–434.

    Article  CAS  PubMed  Google Scholar 

  • Fähling M . (2009). Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiologica 195: 205–230.

    Article  PubMed  Google Scholar 

  • Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV . (2001). Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem 276: 7919–7926.

    Article  CAS  PubMed  Google Scholar 

  • Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC . (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11: 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackenbeck T, Knaup KX, Schietke R, Schödel J, Willam C, Wu X et al. (2009). HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. Cell Cycle 8: 1386–1395.

    Article  CAS  PubMed  Google Scholar 

  • Harper JV . (2005). Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol Biol 296: 157–166.

    CAS  PubMed  Google Scholar 

  • Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W . (2003). Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 5: 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Iliopoulos O, Kibel A, Gray S, Kaelin WG . (1995). Tumor suppression by the human von Hippel-Lindau gene product. Nat Med 1: 822–826.

    Article  CAS  PubMed  Google Scholar 

  • Iliopoulos O, Ohh M, Kaelin Jr WG . (1998). pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci USA 95: 11661–11666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson PK . (2004). Linking tumor suppression, DNA damage and the anaphase-promoting complex. Trends Cell Biol 14: 331–334.

    Article  CAS  PubMed  Google Scholar 

  • Jung CR, Hwang KS, Yoo J, Cho WK, Kim JM, Kim WH et al. (2006). E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis. Nat Med 12: 809–816.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG . (2005). Proline hydroxylation and gene expression. Annu Rev Biochem 74: 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG . (2007a). Von Hippel-Lindau disease. Annu Rev Pathol 2: 145–173.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin Jr WG . (2007b). The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res 13: 680s–684s.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin Jr WG . (2008). The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8: 865–873.

    Article  CAS  PubMed  Google Scholar 

  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . (2004). HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23: 1949–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendahl U, Lee KL, Yang H, Poellinger L . (2009). Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 10: 821–832.

    Article  CAS  PubMed  Google Scholar 

  • Listovsky T, Oren YS, Yudkovsky Y, Mahbubani HM, Weiss AM, Lebendiker M et al. (2004). Mammalian Cdh1/Fzr mediates its own degradation. EMBO J 23: 1619–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Simon MC . (2004). Regulation of transcription and translation by hypoxia. Cancer Biol Ther 3: 492–497.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li W, Fujita T, Yang Q, Wan Y . (2008). Proteolysis of CDH1 enhances susceptibility to UV radiation-induced apoptosis. Carcinogenesis 29: 263–272.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wu G, Li W, Lobur D, Wan Y . (2007). Cdh1-anaphase-promoting complex targets Skp2 for destruction in transforming growth factor beta-induced growth inhibition. Mol Cell Biol 27: 2967–2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musacchio A, Salmon ED . (2007). The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8: 379–393.

    Article  CAS  PubMed  Google Scholar 

  • Pause A, Lee S, Lonergan KM, Klausner RD . (1998). The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci USA 95: 993–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfleger CM, Lee E, Kirschner MW . (2001). Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev 15: 2396–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmaltz C, Hardenbergh PH, Wells A, Fisher DE . (1998). Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 18: 2845–2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenfeld A, Davidowitz EJ, Burk RD . (1998). A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci USA 95: 8817–8822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL . (2009). Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114: 2015–2019.

    Article  CAS  PubMed  Google Scholar 

  • Stebbins CE, Kaelin Jr WG, Pavletich NP . (1999). Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284: 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Stickle NH, Cheng LS, Watson IR, Alon N, Malkin D, Irwin MS et al. (2005). Expression of p53 in renal carcinoma cells is independent of pVHL. Mut Res 578: 23–32.

    Article  CAS  Google Scholar 

  • Sudo T, Ota Y, Kotani S, Nakao M, Takami Y, Takeda S et al. (2001). Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J 20: 6499–6508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoma CR, Frew IJ, Hoerner CR, Montani M, Moch H, Krek W . (2007). pVHL and GSK3beta are components of a primary cilium-maintenance signalling network. Nat Cell Biol 9: 588–595.

    Article  CAS  PubMed  Google Scholar 

  • Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P et al. (2009). VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol 11: 994–1001.

    Article  CAS  PubMed  Google Scholar 

  • van Leuken R, Clijsters L, Wolthuis R . (2008). To cell cycle, swing the APC/C. Biochimica et Biophysica Acta 1786: 49–59.

    CAS  PubMed  Google Scholar 

  • Wan Y, Liu X, Kirschner MW . (2001). The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction. Mol Cell 8: 1027–1039.

    Article  CAS  PubMed  Google Scholar 

  • Warnecke C, Weidemann A, Volke M, Schietke R, Wu X, Knaup KX et al. (2008). The specific contribution of hypoxia-inducible factor-2alpha to hypoxic gene expression in vitro is limited and modulated by cell type-specific and exogenous factors. Exp Cell Res 314: 2016–2027.

    Article  CAS  PubMed  Google Scholar 

  • Wasch R, Robbins JA, Cross FR . (2010). The emerging role of APC/C(Cdh1) in controlling differentiation, genomic stability and tumor suppression. Oncogene 29: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin Jr WG . (2004). Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428: 194–198.

    Article  CAS  PubMed  Google Scholar 

  • Wykoff CC, Sotiriou C, Cockman ME, Ratcliffe PJ, Maxwell P, Liu E et al. (2004). Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br J Cancer 90: 1235–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10: 361–369.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Arthur Haas, for support and discussions, Eric Hittle, Kimberlee Rankin, Mike Meyer, and Miki Katuwal for technical assistance, and the Cancer Association of Greater New Orleans for support to HX. This work was supported by the LSUHSC-NO Dean's Research Fund and NIH grant CA125930. DTE was supported by T32DK007774.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Gnarra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Xin, H., Eckert, D. et al. Hypoxia and cell cycle regulation of the von Hippel–Lindau tumor suppressor. Oncogene 30, 21–31 (2011). https://doi.org/10.1038/onc.2010.395

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.395

Keywords

This article is cited by

Search

Quick links