Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CD133 suppresses neuroblastoma cell differentiation via signal pathway modification

Abstract

CD133 (prominin-1) is a transmembrane glycoprotein expressed on the surface of normal and cancer stem cells (tumor-initiating cells), progenitor cells, rod photoreceptor cells and a variety of epithelial cells. Although CD133 is widely used as a marker of various somatic and putative cancer stem cells, its contribution to the fundamental properties of cancer cells, such as tumorigenesis and differentiation, remains to be elucidated. In the present report, we found that CD133 was expressed in several neuroblastoma (NB) cell lines/tumor samples. Intriguingly, CD133 repressed NB cell differentiation, for example neurite extension and the expression of differentiation marker proteins, and was decreased by several differentiation stimuli, but accelerated cell proliferation, anchorage-independent colony formation and in vivo tumor formation of NB cells. NB cell line and primary tumor-sphere experiments indicated that the molecular mechanism of CD133-related differentiation suppression in NB was in part dependent on neurotrophic receptor RET tyrosine kinase regulation. RET transcription was suppressed by CD133 in NB cells and glial cell line-derived neurotrophic factor treatment failed to induce RET in CD133-expressing cells; RET overexpression rescued CD133-related inhibition of neurite elongation. Of note, CD133-related NB cell differentiation and RET repression were mainly dependent on p38MAPK and PI3K/Akt pathways. Furthermore, CD133 has a function in growth and RET expression in NB cell line- and primary tumor cell-derived tumor spheres. To the best of our knowledge, this is the first report of the function of CD133 in cancer cells and our findings may be applied to improve differentiation induction therapy for NB patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aoyama M, Ozaki T, Inuzuka H, Tomotsune D, Hirato J, Okamoto Y et al. (2005). LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Cancer Res 65: 4587–4597.

    Article  CAS  PubMed  Google Scholar 

  • Boivin D, Labbé D, Fontaine N, Lamy S, Beaulieu E, Gingras D et al. (2009). The stem cell marker CD133 (prominin-1) is phosphorylated on cytoplasmic tyrosine-828 and tyrosine-852 by Src and Fyn tyrosine kinases. Biochemistry 48: 3998–4007.

    Article  CAS  PubMed  Google Scholar 

  • Brodeur GM, Sawada T, Tsuchida Y, Voute PA (eds) (2000). Neuroblastoma. Elsevier Science: Amsterdam.

    Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  • Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM et al. (2000). The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275: 5512–5520.

    Article  CAS  PubMed  Google Scholar 

  • Corbeil D, Fargeas CA, Huttner WB . (2001). Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem Biophys Res Commun 285: 939–944.

    Article  CAS  PubMed  Google Scholar 

  • Crowder RJ, Enomoto H, Yang M, Johnson Jr EM, Milbrandt J . (2004). Dok-6, a Novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J Biol Chem 279: 42072–42081.

    Article  CAS  PubMed  Google Scholar 

  • D'Alessio A, De Vita G, Calì G, Nitsch L, Fusco A, Vecchio G et al. (1995). Expression of the RET oncogene induces differentiation of SK-N-BE neuroblastoma cells. Cell Growth Differ 6: 1387–1394.

    CAS  PubMed  Google Scholar 

  • Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson Jr EM, Milbrandt J . (2001). RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 128: 3963–3974.

    CAS  PubMed  Google Scholar 

  • Enomoto H, Heuckeroth RO, Golden JP, Johnson EM, Milbrandt J . (2000). Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development 127: 4877–4889.

    CAS  PubMed  Google Scholar 

  • Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66: 7445–7452.

    Article  CAS  PubMed  Google Scholar 

  • Hansford LM, McKee AE, Zhang L, George RE, Gerstle JT, Thorner PS et al. (2007). Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res 67: 11234–11243.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M et al. (2006). The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res 12: 6170–6178.

    Article  CAS  PubMed  Google Scholar 

  • Itoh F, Ishizaka Y, Tahira T, Yamamoto M, Miya A, Imai K et al. (1992). Identification and analysis of the ret proto-oncogene promoter region in neuroblastoma cell lines and medullary thyroid carcinomas from MEN2A patients. Oncogene 7: 1201–1206.

    CAS  PubMed  Google Scholar 

  • Iehara T, Hosoi H, Akazawa K, Matsumoto Y, Yamamoto K, Suita S et al. (2006). MYCN gene amplification is a powerful prognostic factor even in infantile neuroblastoma detected by mass screening. Br J Cancer 94: 1510–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan CT, Guzman ML, Noble M . (2006). Cancer stem cells. N Engl J Med 355: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan D, Matsumoto K, Lucarelli E, Thiele CJ . (1993). Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 11: 321–331.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Tsuchida Y, Mugishima H, Ohnuma N, Yamamoto K, Kawa K et al. (2002). Intensified chemotherapy increases the survival rates in patients with stage 4 neuroblastoma with MYCN amplification. J Pediatr Hematol Oncol 24: 613–621.

    Article  PubMed  Google Scholar 

  • Klein R . (1994). Role of neurotrophins in mouse neuronal development. FASEB J 8: 738–744.

    Article  CAS  PubMed  Google Scholar 

  • Kurata K, Yanagisawa R, Ohira M, Kitagawa M, Nakagawara A, Kamijo T . (2008). Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells. Oncogene 27: 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY . (2007). CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27: 1749–1758.

    Article  PubMed  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL . (2007). Neuroblastoma. Lancet 369: 2106–2120.

    Article  CAS  PubMed  Google Scholar 

  • Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ et al. (2000). A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9: 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S et al. (2007). Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67: 3153–3161.

    Article  CAS  PubMed  Google Scholar 

  • Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43: 935–946.

    Article  CAS  PubMed  Google Scholar 

  • Myers SM, Eng C, Ponder BA, Mulligan LM . (1995). Characterization of RET proto-oncogene 3′ splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene 11: 2039–2045.

    CAS  PubMed  Google Scholar 

  • Nakanishi H, Ozaki T, Nakamura Y, Hashizume K, Iwanaka T, Nakagawara A . (2007). Purification of human primary neuroblastomas by magnetic beads and their in vitro culture. Oncol Rep 17: 1315–1320.

    PubMed  Google Scholar 

  • Nikolova T, Wu M, Brumbarov K, Alt R, Opitz H, Boheler KR et al. (2007). WNT-conditioned media differentially affect the proliferation and differentiation of cord blood-derived CD133+ cells in vitro. Differentiation 75: 100–111.

    Article  CAS  PubMed  Google Scholar 

  • O'Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.

    Article  CAS  PubMed  Google Scholar 

  • Ochiai H, Takenobu H, Nakagawa A, Yamaguchi Y, Kimura M, Ohira M et al. (2010). Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1Bβ and TSLC1 in neuroblastoma. Oncogene 29: 2681–2690.

    Article  CAS  PubMed  Google Scholar 

  • Ohira M, Morohashi A, Inuzuka H, Shishikura T, Kawamoto T, Kageyama H et al. (2003). Expression profiling and characterization of 4200 genes cloned from primary neuroblastomas: identification of 305 genes differentially expressed between favorable and unfavorable subsets. Oncogene 22: 5525–5536.

    Article  CAS  PubMed  Google Scholar 

  • Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H . (2007). Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6: 92–97.

    CAS  PubMed  Google Scholar 

  • Peterson S, Bogenmann E . (2004). The RET and TRKA pathways collaborate to regulate neuroblastoma differentiation. Oncogene 23: 213–225.

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL . (2001). Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. (2007). Identification and expansion of human colon-cancer initiating cells. Nature 445: 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK et al. (2004). Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103: 2055–2061.

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Walton JD, Kattan DR, Thomas SK, Spengler BA, Guo HF, Biedler JL et al. (2004). Characteristics of stem cells from human neuroblastoma cell lines and in tumors. Neoplasia 6: 838–845.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA (ed) (2006). The Biology of Cancer. Garland Science: New York.

    Google Scholar 

  • Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90: 5002–5012.

    CAS  PubMed  Google Scholar 

  • Yin S, Li J, Hu C, Chen X, Yao M, Yan M et al. (2007). CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120: 1444–1450.

    Article  CAS  PubMed  Google Scholar 

  • Zacchigna S, Oh H, Wilsch-Bräuninger M, Missol-Kolka E, Jászai J, Jansen S et al. (2009). Loss of the cholesterol-binding protein prominin-1/CD133 causes disk dysmorphogenesis and photoreceptor degeneration. J Neurosci 29: 2297–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K Sakurai and S Matsushita for technical assistance, Dr Hiroyuki Miyoshi (BioResource Center, RIKEN) for the gift of CSII-CMV-MCS-IRES2-Bsd plasmid and Daniel Mrozek, Medical English Service, for editorial assistance. This work was supported in part by a grant-in-aid from JSPS for Young Scientists (B) (number: 19790274), a grant-in-aid from the Ministry of Health, Labor, and Welfare for Third Term Comprehensive Control Research for Cancer, a grant-in-aid for Cancer Research (20–13) from the Ministry of Health, Labor, and Welfare of Japan and a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (number: 21591377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kamijo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takenobu, H., Shimozato, O., Nakamura, T. et al. CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene 30, 97–105 (2011). https://doi.org/10.1038/onc.2010.383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.383

Keywords

This article is cited by

Search

Quick links