Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Serine/threonine phosphatases in the DNA damage response and cancer

Abstract

The cellular response to DNA damage is a crucial surveillance mechanism that maintains genomic integrity and prevents cancer progression. Previous studies identified multiple Ser/Thr protein kinases that have pivotal roles in the activation of this response. It is interesting that a growing body of evidence suggests that these kinases and their substrates are under tight modulation by numerous Ser/Thr phosphatases. In this study, we review recent reports that reveal new functions and regulation of these phosphatases. Similar to the kinases in this pathway, phosphatases may also be intimately involved in cancer progression and present valuable targets for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ahn J, Urist M, Prives C . (2004). The Chk2 protein kinase. DNA Repair 3: 1039–1047.

    CAS  PubMed  Google Scholar 

  • Ali A, Zhang J, Bao SD, Liu I, Otterness D, Dean NM et al. (2004). Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 18: 249–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D et al. (2007). Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 25: 5448–5457.

    CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    CAS  PubMed  Google Scholar 

  • Bazzi M, Mantiero D, Trovesi C, Lucchini G, Longhese MP . (2010). Dephosphorylation of gamma H2A by Glc7/protein phosphatase 1 promotes recovery from inhibition of DNA replication. Mol Cell Biol 30: 131–145.

    CAS  PubMed  Google Scholar 

  • Belova GI, Demidov ON, Fornace AJ, Bulavin DV . (2005). Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis. Cancer Biol Ther 4: 1154–1158.

    CAS  PubMed  Google Scholar 

  • Bolderson E, Richard DJ, Zhou BBS, Khanna KK . (2009). Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15: 6314–6320.

    CAS  PubMed  Google Scholar 

  • Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al. (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210–215.

    CAS  PubMed  Google Scholar 

  • Buscemi G, Carlessi L, Zannini L, Lisanti S, Fontanella E, Canevari S et al. (2006). DNA damage-induced cell cycle regulation and function of novel Chk2 phosphoresidues. Mol Cell Biol 26: 7832–7845.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlessi L, Buscemi G, Fontanella E, Delia D . (2010). A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage. Biochim Biophys Acta 1803: 1213–1223.

    CAS  PubMed  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA et al. (2002). Genomic instability in mice lacking histone H2AX. Science 296: 922–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha HLJ, Li H, Lee JS, Belova GI, Bulavin DV, Fornace Jr AJ . (2010). Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res 70: 4112–4222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC . (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5: 127–136.

    CAS  PubMed  Google Scholar 

  • Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J . (2005). Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA Double-strand break repair. Mol Cell 20: 801–809.

    CAS  PubMed  Google Scholar 

  • Chowdhury D, Xu XZ, Zhong XY, Ahmed F, Zhong JN, Liao J et al. (2008). A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 31: 33–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel JA, Pellegrini M, Lee JH, Paull TT, Feigenbaum L, Nussenzweig A . (2008). Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. J Cell Biol 183: 777–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • den Elzen NR, O'Connell MJ . (2004). Recovery from DNA damage checkpoint arrest by PP1-mediated inhibition of Chk1. Embo J 23: 908–918.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dohoney KM, Guillerm C, Whiteford C, Elbi C, Lambert PF, Hager GL et al. (2004). Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage. Oncogene 23: 49–57.

    CAS  PubMed  Google Scholar 

  • Douglas P, Moorhead GB, Ye RQ, Lees-Miller SP . (2001). Protein phosphatases regulate DNA-dependent protein kinase activity. J Biol Chem 276: 18992–18998.

    CAS  PubMed  Google Scholar 

  • Douglas P, Zhong JN, Ye RQ, Moorhead GBG, Xu XZ, Lees-Miller SP . (2010). Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol Cell Biol 30: 1368–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dozier C, Bonyadi M, Baricault L, Tonasso L, Darbon JM . (2004). Regulation of Chk2 phosphorylation by interaction with protein phosphatase 2A via its B ′ regulatory subunit. Biol Cell 96: 509–517.

    CAS  PubMed  Google Scholar 

  • Efeyan A, Serrano M . (2007). p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6: 1006–1010.

    CAS  PubMed  Google Scholar 

  • Feng J, Wakeman T, Yong S, Wu X, Kornbluth S, Wang XF . (2009). Protein phosphatase 2A-dependent dephosphorylation of replication protein A is required for the repair of DNA breaks induced by replication stress. Mol Cell Biol 29: 5696–5709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC et al. (2002). DNA damage-induced G(2)-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 4: 993–997.

    CAS  PubMed  Google Scholar 

  • Fiscella M, Zhang HL, Fan SJ, Sakaguchi K, Shen SF, Mercer WE et al. (1997). Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA 94: 6048–6053.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman AK, Dapic V, Monteiro AN . (2010). Negative regulation of Chk2 activation by protein phosphatase 2A is modulated by DNA damage. Cell Cycle 9: 736–747.

    CAS  PubMed  Google Scholar 

  • Fujimoto H, Onishi N, Kato N, Takekawa M, Xu X, Kosugi A et al. (2006). Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Cell Death Differ 13: 1170–1180.

    CAS  PubMed  Google Scholar 

  • Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye RQ, Moorhead GB et al. (2004). Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. Embo J 23: 4451–4461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis VG, Vassiliou LVF, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    CAS  PubMed  Google Scholar 

  • Guillemain G, Ma E, Mauger S, Miron S, Thai R, Guerois R et al. (2007). Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae. Mol Cell Biol 27: 3378–3389.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gumy-Pause F, Wacker P, Sappino AP . (2004). ATM gene and lymphoid malignancies. Leukemia 18: 238–242.

    CAS  PubMed  Google Scholar 

  • Guo CY, Brautigan DL, Larner JM . (2002). Ionizing radiation activates nuclear protein phosphatase-1 by ATM-dependent dephosphorylation. J Biol Chem 277: 41756–41761.

    CAS  PubMed  Google Scholar 

  • Haidar MA, Kantarjian H, Manshouri T, Chang CY, O′Brien S, Freireich E et al. (2000). ATM gene deletion in patients with adult acute lymphoblastic leukemia. Cancer 88: 1057–1062.

    CAS  PubMed  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J . (2008). An oncogene-induced DNA damage model for cancer development. Science 319: 1352–1355.

    CAS  PubMed  Google Scholar 

  • Hamilton J, Grawenda AM, Bernhard EJ . (2009). Phosphatase inhibition and cell survival after DNA damage induced by radiation. Cancer Biol Ther 8: 1577–1586.

    CAS  PubMed  Google Scholar 

  • Haneda M, Kojima E, Nishikimi A, Hasegawa T, Nakashima I, Isobe K . (2004). Protein phosphatase 1, but not protein phosphatase 2A, dephosphorylates DNA-damaging stress-induced phospho-serine 15 of p53. Febs Lett 567: 171–174.

    CAS  PubMed  Google Scholar 

  • Heideker J, Lis ET, Romesberg FE . (2007). Phosphatases, DNA damage checkpoints and checkpoint deactivation. Cell Cycle 6: 3058–3064.

    CAS  PubMed  Google Scholar 

  • Helps NR, Barker HM, Elledge SJ, Cohen PTW . (1995). Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53. Febs Lett 377: 295–300.

    CAS  PubMed  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GCM, Lukas J et al. (2006). ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8: 37–45.

    CAS  PubMed  Google Scholar 

  • Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H et al. (2009). The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23: 1895–1909.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC et al. (2006). A phosphatase complex that dephosphorylates gamma H2AX regulates DNA damage checkpoint recovery. Nature 441: 479–501.

    Google Scholar 

  • Khanna KK, Jackson SP . (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247–254.

    CAS  PubMed  Google Scholar 

  • Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF . (2006). Involvement of novel autophosphorylation sites in ATM activation. Embo J 25: 3504–3514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz EU, Douglas P, Lees-Miller SP . (2004). Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J Biol Chem 279: 53272–53281.

    CAS  PubMed  Google Scholar 

  • Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA, Chowdhury D . (2010). A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nat Struct Mol Biol 17: 365–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Lim CJ, Min JK, Lee JK, Kim YM, Lee JY et al. (2007). Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2. Cell Death Differ 14: 1106–1116.

    CAS  PubMed  Google Scholar 

  • Leroy C, Lee SE, Vaze MB, Ochsenbein F, Guerois R, Haber JE et al. (2003). PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell 11: 827–835.

    CAS  PubMed  Google Scholar 

  • Leung-Pineda V, Ryan CE, Piwnica-Worms H . (2006). Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol Cell Biol 26: 7529–7538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB et al. (2006). Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene 25: 3006–3022.

    CAS  PubMed  Google Scholar 

  • Li HH, Cai X, Shouse GP, Piluso LG, Liu XA . (2007). A specific PP2A regulatory subunit, B56 gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. Embo J 26: 402–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven G, Nguyen KCQ et al. (2002). Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31: 133–134.

    CAS  PubMed  Google Scholar 

  • Liang XB, Reed E, Yu JJ . (2006). Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells. Int J Mol Med 17: 703–708.

    CAS  PubMed  Google Scholar 

  • Liu Y, Virshup DM, White RL, Hsu LC . (2002). Regulation of BRCA1 phosphorylation by interaction with protein phosphatase 1alpha. Cancer Res 62: 6357–6381.

    CAS  PubMed  Google Scholar 

  • Lou ZK, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A et al. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21: 187–200.

    CAS  PubMed  Google Scholar 

  • Lu G, Wang YB . (2008). Functional diversity of mammalian Type 2C protein phosphatase isoforms: New tales from an old family. Clin Exp Pharm Physiol 35: 107–112.

    CAS  Google Scholar 

  • Lu J, Kovach JS, Johnson F, Chiang J, Hodes R, Lonser R et al. (2009). Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci USA 106: 11697–11702.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu XB, Ma O, Nguyen TA, Joness SN, Oren M, Donehower LA . (2007). The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 12: 342–354.

    CAS  PubMed  Google Scholar 

  • Lu XB, Nannenga B, Donehower LA . (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19: 1162–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu XB, Nguyen TA, Moon SH, Darlington Y, Sommer M, Donehower LA . (2008). The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 27: 123–135.

    PubMed  PubMed Central  Google Scholar 

  • Macůrek L, Lindqvist A, Voets O, Kool J, Vos HR, Medema RH . (2010). Wip1 phosphatase is associated with chromatin and dephosphorylates γH2AX to promote checkpoint inhibition. Oncogene 29: 2281–2291.

    PubMed  Google Scholar 

  • Mi J, Dziegielewski J, Bolesta E, Brautigan DL, Larner JM . (2009a). Activation of DNA-PK by ionizing radiation is mediated by protein phosphatase 6. PloS One 4: e4395.

    PubMed  PubMed Central  Google Scholar 

  • Mi J, Mesta E, Brautigan DL, Larner JM . (2009b). PP2A regulates ionizing radiation-induced apoptosis through Ser46 phosphorylation of p53. Mol Cancer Ther 8: 135–140.

    CAS  PubMed  Google Scholar 

  • Mochan TA, Venere M, DiTullio RA, Halazonetis TD . (2003). 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63: 8586–8591.

    CAS  PubMed  Google Scholar 

  • Moon SH, Lin L, Zhang X, Nguyen TA, Darlington Y, Waldman AS et al. (2010). Wildtype p53-induced phosphatase 1 dephosphorylates histone variant {gamma}-H2AX and suppresses double strand break repair. J Biol Chem 285: 12935–12947.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moorhead GBG, Trinkle-Mulcahy L, Ulke-Lemee A . (2007). Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8: 234–244.

    CAS  PubMed  Google Scholar 

  • Motoyama N, Naka K . (2004). DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev 14: 11–16.

    CAS  PubMed  Google Scholar 

  • Myers JS, Cortez D . (2006). Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 281: 9346–9350.

    CAS  PubMed  Google Scholar 

  • Nakada S, Chen GI, Gingras AC, Durocher D . (2008). PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. Embo Rep 9: 1019–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nazarov OB, Smirnova AN, Krutilina RI, Svetlova MP, Solovjeva LV, Nikiforov AA et al. (2003). Dephosphorylation of histone gamma-H2AX during repair of DNA double-strand breaks in mammalian cells and its inhibition by calyculin A. Rad Res 160: 309–317.

    CAS  Google Scholar 

  • O'Neill BM, Szyjka SJ, Lis ET, Bailey AO, Yates JR, Aparicio OM et al. (2007). Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proc Natl Acad Sci USA 104: 9290–9295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva-Trastoy M, Berthonaud V, Chevalier A, Ducrot C, Marsolier-Kergoat MC, Mann C et al. (2007). The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene 26: 1449–1458.

    CAS  PubMed  Google Scholar 

  • Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang WD, Feigenbaum L et al. (2006). Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443: 222–225.

    CAS  PubMed  Google Scholar 

  • Peng A, Lewellyn AL, Schiemann WP, Maller JL . (2010). Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol 20: 387–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt HC, Yaffe MB . (2009). Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21: 245–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz JK, Lovly CM, Piwnica-Worms H . (2003). Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Mol Cancer Res 1: 598–609.

    CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    CAS  PubMed  Google Scholar 

  • Shouse GP, Cai X, Liu X . (2008). Serine 15 phosphorylation of p53 directs its interaction with B56 gamma and the tumor suppressor activity of B56 gamma-specific protein phosphatase 2A. Mol Cell Biol 28: 448–456.

    CAS  PubMed  Google Scholar 

  • Shouse GP, Nobumori Y, Liu X . (2010). A B56c mutation in lung cancer disrupts the p53-dependent tumor-suppressor function of protein phosphatase 2A. Oncogene. 29: 3933–3941.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C et al. (2006a). Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell 23: 757–764.

    CAS  PubMed  Google Scholar 

  • Shreeram S, Hee WK, Demidov ON, Kek C, Yamaguchi H, Fornace AJ et al. (2006b). Regulation of ATM/p53-dependent suppression of myc-induced lymphomas by Wip1 phosphatase. J Exp Med 203: 2793–2799.

    CAS  PubMed  PubMed Central  Google Scholar 

  • So SR, Davis AJ, Chen DJ . (2009). Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 187: 977–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soutoglou E, Misteli T . (2008). Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320: 1507–1510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stucki M, Jackson SP . (2006). gamma H2AX and MDC1: Anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5: 534–543.

    CAS  PubMed  Google Scholar 

  • Tang X, Hui ZG, Cui XL, Garg R, Kastan MB, Xu B . (2008). A novel ATM-Dependent pathway regulates protein phosphatase 1 in response to DNA damage. Mol Cell Biol 28: 2559–2566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Travesa A, Duch A, Quintana DG . (2008). Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53. J Biol Chem 283: 17123–17130.

    CAS  PubMed  Google Scholar 

  • Trinkle-Mulcahy L, Sleeman JE, Lamond AI . (2001). Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J Cell Sci 114: 4219–4228.

    CAS  PubMed  Google Scholar 

  • Virshup DM, Shenolikar S . (2009). From Promiscuity to Precision: Protein Phosphatases Get a Makeover. Mol Cell 33: 537–545.

    CAS  PubMed  Google Scholar 

  • Wechsler T, Chen BPC, Harper R, Morotomi-Yano K, Huang BCB, Meek K et al. (2004). DNA-PKcs function regulated specifically by protein phosphatase 5. Proc Natl Acad Sci USA 101: 1247–1252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood JL, Chen JJ . (2008). DNA-damage checkpoints: location, location, location. Trends Cell Biol 18: 451–455.

    CAS  PubMed  Google Scholar 

  • Wu XL, Chen JJ . (2003). Autophosphorylation of checkpoint kinase 2 at serine 516 is required for radiation-induced apoptosis. J Biol Chem 278: 36163–36168.

    CAS  PubMed  Google Scholar 

  • Xia Y, Ongusaha P, Lee SW, Liou YC . (2009). Loss of Wip1 sensitizes cells to stress- and DNA damage-induced apoptosis. J Biol Chem 284: 17428–17437.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Durell SR, Chatterjee DK, Anderson CW, Appella E . (2007). The wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry 46: 12594–12603.

    CAS  PubMed  Google Scholar 

  • Yan Y, Cao PT, Greer PM, Nagengast ES, Kolb RH, Mumby MC et al. (2010). Protein phosphatase 2A has an essential role in the activation of gamma-irradiation-induced G2/M checkpoint response. Oncogene 29: 4317–4329.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoda A, Xu XZ, Onishi N, Toyoshima K, Fujimoto H, Kato N et al. (2006). Intrinsic kinase activity and SQ/TQ domain of Chk2 kinase as well as N-terminal domain of Wip1 phosphatase are required for regulation of Chk2 by Wip1. J Biol Chem 281: 24847–24862.

    CAS  PubMed  Google Scholar 

  • Yong WD, Bao SD, Chen HY, Li DP, Sanchez ER, Shou W . (2007). Mice lacking protein phosphatase 5 are defective in ataxia telangiectasia mutated (ATM)-mediated cell cycle arrest. J Biol Chem 282: 14690–14694.

    CAS  PubMed  Google Scholar 

  • Zhang J, Bao SD, Furumai R, Kueera KS, Ali A, Dean NA et al. (2005). Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol Cell Biol 25: 9910–9919.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Piwnica-Worms H . (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129–4139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou BB, Anderson HJ, Roberge M . (2003). Targeting DNA checkpoint kinases in cancer therapy. Cancer Biol Ther 2: S16–S22.

    CAS  PubMed  Google Scholar 

  • Zhou BB, Elledge SJ . (2000). The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Maller lab for stimulating discussions. This work was supported by the Howard Hughes Medical Institute. We apologize to colleagues whose relevant works are not cited here due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Maller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, A., Maller, J. Serine/threonine phosphatases in the DNA damage response and cancer. Oncogene 29, 5977–5988 (2010). https://doi.org/10.1038/onc.2010.371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.371

Keywords

This article is cited by

Search

Quick links