Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proteins that bind the Src homology 3 domain of CrkI have distinct roles in Crk transformation

Abstract

The v-Crk oncogene product consists of two protein interaction modules, a Src homology 2 (SH2) domain and a Src homology 3 (SH3) domain. Overexpression of CrkI, the cellular homolog of v-Crk, transforms mouse fibroblasts, and elevated CrkI expression is observed in several human cancers. The SH2 and SH3 domains of Crk are required for transformation, but the identity of the critical cellular binding partners is not known. A number of candidate Crk SH3-binding proteins have been identified, including the nonreceptor tyrosine kinases c-Abl and Arg, and the guanine nucleotide exchange proteins C3G, SOS1 and DOCK180. The aim of this study is to determine which of these are required for transformation by CrkI. We found that short hairpin RNA-mediated knockdown of C3G or SOS1 suppressed anchorage-independent growth of NIH-3T3 cells overexpressing CrkI, whereas knockdown of SOS1 alone was sufficient to suppress tumor formation by these cells in nude mice. Knockdown of C3G was sufficient to revert morphological changes induced by CrkI expression. By contrast, knockdown of Abl family kinases or their inhibition with imatinib enhanced anchorage-independent growth and tumorigenesis induced by Crk. These results show that SOS1 is essential for CrkI-induced fibroblast transformation, and also reveal a surprising negative role for Abl kinases in Crk transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akagi T, Murata K, Shishido T, Hanafusa H . (2002). v-Crk activates the phosphoinositide 3-kinase/AKT pathway by utilizing focal adhesion kinase and H-Ras. Mol Cell Biol 22: 7015–7023.

    Article  CAS  Google Scholar 

  • Akagi T, Shishido T, Murata K, Hanafusa H . (2000). v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc Natl Acad Sci USA 97: 7290–7295.

    Article  CAS  Google Scholar 

  • Antoku S, Mayer BJ . (2009). Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J Cell Sci 122: 4228–4238.

    Article  CAS  Google Scholar 

  • Birge RB, Fajardo JE, Reichman C, Shoelson SE, Songyang Z, Cantley LC et al. (1993). Identification and characterization of a high-affinity interaction between v-Crk and tyrosine-phosphorylated paxillin in CT10-transformed fibroblasts. Mol Cell Biol 13: 4648–4656.

    Article  CAS  Google Scholar 

  • Cipres A, Abassi YA, Vuori K . (2007). Abl functions as a negative regulator of Met-induced cell motility via phosphorylation of the adapter protein CrkII. Cell Signal 19: 1662–1670.

    Article  CAS  Google Scholar 

  • Crawford M, Brawner E, Batte K, Yu L, Hunter MG, Otterson GA et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun 373: 607–612.

    Article  CAS  Google Scholar 

  • Deakin NO, Turner CE . (2008). Paxillin comes of age. J Cell Sci 121: 2435–2344.

    Article  CAS  Google Scholar 

  • Defilippi P, Di Stefano P, Cabodi S . (2006). p130Cas: a versatile scaffold in signaling networks. Trends Cell Biol 16: 257–263.

    Article  CAS  Google Scholar 

  • Deininger MW, Goldman JM, Lydon N, Melo JV . (1997). The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 90: 3691–3698.

    CAS  PubMed  Google Scholar 

  • Druker BJ . (2009). Perspectives on the development of imatinib and the future of cancer research. Nat Med 15: 1149–1152.

    Article  CAS  Google Scholar 

  • Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2: 561–566.

    Article  CAS  Google Scholar 

  • Feller SM . (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene 20: 6348–6371.

    Article  CAS  Google Scholar 

  • Feller SM, Knudsen B, Hanafusa H . (1994). c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J 13: 2341–2351.

    Article  CAS  Google Scholar 

  • Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y et al. (1995). Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol Cell Biol 15: 6746–6753.

    Article  CAS  Google Scholar 

  • Gotoh T, Niino Y, Tokuda M, Hatase O, Nakamura S, Matsuda M et al. (1997). Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J Biol Chem 272: 18602–18607.

    Article  CAS  Google Scholar 

  • Greulich H, Hanafusa H . (1996). A role for Ras in v-Crk transformation. Cell Growth Differ 7: 1443–14451.

    CAS  PubMed  Google Scholar 

  • Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M et al. (1996). DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol 16: 1770–1776.

    Article  CAS  Google Scholar 

  • Hemmeryckx B, van Wijk A, Reichert A, Kaartinen V, de Jong R, Pattengale PK et al. (2001). Crkl enhances leukemogenesis in BCR/ABL P190 transgenic mice. Cancer Res 61: 1398–1405.

    CAS  Google Scholar 

  • Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP et al. (2002). Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol 56: 125–136.

    Article  Google Scholar 

  • Iwahara T, Akagi T, Fujitsuka Y, Hanafusa H . (2004). CrkII regulates focal adhesion kinase activation by making a complex with Crk-associated substrate, p130Cas. Proc Natl Acad Sci USA 101: 17693–17698.

    Article  CAS  Google Scholar 

  • Iwahara T, Akagi T, Shishido T, Hanafusa H . (2003). CrkII induces serum response factor activation and cellular transformation through its function in Rho activation. Oncogene 22: 5946–5957.

    Article  CAS  Google Scholar 

  • Kain K, Klemke R . (2001). Inihibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J Biol Chem 276: 16185–16192.

    Article  CAS  Google Scholar 

  • Kain KH, Gooch S, Klemke RL . (2003). Cytoplasmic c-Abl provides a molecular ′Rheostat′ controlling carcinoma cell survival and invasion. Oncogene 22: 6071–6080.

    Article  CAS  Google Scholar 

  • Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y et al. (2007). Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nat Struct Mol Biol 14: 503–510.

    Article  CAS  Google Scholar 

  • Linghu H, Tsuda M, Makino Y, Sakai M, Watanabe T, Ichihara S et al. (2006). Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 25: 3547–3556.

    Article  CAS  Google Scholar 

  • Matsuda M, Hashimoto Y, Muroya K, Hasegawa H, Kurata T, Tanaka S et al. (1994). CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol Cell Biol 14: 5495–5500.

    Article  CAS  Google Scholar 

  • Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T et al. (1996). Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins. J Biol Chem 271: 14468–14472.

    Article  CAS  Google Scholar 

  • Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M . (1992). Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol 12: 3482–3489.

    Article  CAS  Google Scholar 

  • Mayer BJ, Hamaguchi M, Hanafusa H . (1988). A novel viral oncogene with structural similarity to phospholipase C. Nature 332: 272–275.

    Article  CAS  Google Scholar 

  • Mayer BJ, Hanafusa H . (1990). Mutagenic analysis of the v-crk oncogene: requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation. J Virol 64: 3581–3589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE et al. (2003). Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22: 7950–7957.

    Article  Google Scholar 

  • Mochizuki N, Ohba Y, Kobayashi S, Otsuka N, Graybiel AM, Tanaka S et al. (2000). Crk activation of JNK via C3G and R-Ras. J Biol Chem 275: 12667–12671.

    Article  CAS  Google Scholar 

  • Nievers MG, Birge RB, Greulich H, Verkleij AJ, Hanafusa H, van Bergen en Henegouwen PM . (1997). v-Crk-induced cell transformation: changes in focal adhesion composition and signaling. J Cell Sci 110: 389–399.

    CAS  PubMed  Google Scholar 

  • Noren NK, Foos G, Hauser CA, Pasquale EB . (2006). The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 8: 815–825.

    Article  CAS  Google Scholar 

  • Pendergast AM . (2002). The Abl family kinases: mechanisms of regulation and signaling. Adv Cancer Res 85: 51–100.

    Article  CAS  Google Scholar 

  • Qian X, Esteban L, Vass WC, Upadhyaya C, Papageorge AG, Yienger K et al. (2000). The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J 19: 642–654.

    Article  CAS  Google Scholar 

  • Reichman CT, Mayer BJ, Keshav S, Hanafusa H . (1992). The product of the cellular crk gene consists primarily of SH2 and SH3 regions. Cell Growth Diff 3: 451–460.

    CAS  PubMed  Google Scholar 

  • Ren R, Ye Z-S, Baltimore D . (1994). Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev 8: 783–795.

    Article  CAS  Google Scholar 

  • Riggins RB, DeBerry RM, Toosarvandani MD, Bouton AH . (2003). Src-dependent association of Cas and p85 phosphatidylinositol 3′-kinase in v-crk-transformed cells. Mol Cancer Res 1: 428–437.

    CAS  PubMed  Google Scholar 

  • Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H et al. (1994a). A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J 13: 3748–3756.

    Article  CAS  Google Scholar 

  • Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Nishida J et al. (1994b). Characterization, partial purification, and peptide sequencing of p130,the main phosphoprotein associated with v-Crk oncoprotein. J Biol Chem 269: 32740–32746.

    CAS  PubMed  Google Scholar 

  • Senechal K, Heaney C, Druker B, Sawyers CL . (1998). Structural requirement for function of the Crkl adapter protein in firbroblasts and hematopoietic cells. Mol Cell Biol 18: 5082–5090.

    Article  CAS  Google Scholar 

  • Sharma A, Antoku S, Mayer BJ . (2004). The functional interaction trap: a novel strategy to study specific protein-protein interactions. In: Kamp RM, Calvete J and Choli-Papadopoulou T (eds). Methods in Proteome and Protein Analysis (MPSA 2002). Springer-Verlag: Berlin, pp 165–181.

    Chapter  Google Scholar 

  • Shishido T, Akagi T, Chalmers A, Maeda M, Terada T, Georgescu MM et al. (2001). Crk family adaptor proteins trans-activate c-Abl kinase. Genes Cells 6: 431–440.

    Article  CAS  Google Scholar 

  • Stam JC, Geerts WJ, Versteeg HH, Verkleij AJ, van Bergen en Henegouwen PM . (2001). The v-Crk oncogene enhances cell survival and induces activation of protein kinase B/Akt. J Biol Chem 276: 25176–25183.

    Article  CAS  Google Scholar 

  • Takino T, Nakada M, Miyamori H, Yamashita J, Yamada KM, Sato H . (2003). CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res 63: 2335–2337.

    CAS  PubMed  Google Scholar 

  • Tanaka M, Gupta R, Mayer BJ . (1995). Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol 15: 6829–6837.

    Article  CAS  Google Scholar 

  • Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M et al. (1994). C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Nat Acad Sci USA 91: 3443–3447.

    Article  CAS  Google Scholar 

  • Tanaka S, Ouchi T, Hanafusa H . (1997). Downstream of Crk adaptor signaling pathway: activation of Jun kinase by v-Crk through the guanine nucleotide exchange protein C3G. Proc Natl Acad Sci USA 94: 2356–2361.

    Article  CAS  Google Scholar 

  • ten Hoeve J, Morris C, Heisterkamp N, Groffen J . (1993). Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene 8: 2469–2474.

    CAS  Google Scholar 

  • Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A et al. (2004). Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32: 936–948.

    Article  CAS  Google Scholar 

  • Wang B, Mysliwiec T, Feller SM, Knudsen B, Hanafusa H, Kruh GD . (1996). Proline-rich sequences mediate the interaction of the Arg protein tyrosine kinase with Crk. Oncogene 13: 1379–1385.

    CAS  PubMed  Google Scholar 

  • Wang JY . (2000). Regulation of cell death by the Abl tyrosine kinase. Oncogene 19: 5643–5650.

    Article  CAS  Google Scholar 

  • Wang L, Tabu K, Kimura T, Tsuda M, Linghu H, Tanino M et al. (2007). Signaling adaptor protein Crk is indispensable for malignant feature of glioblastoma cell line KMG4. Biochem Biophys Res Commun 362: 976–981.

    Article  CAS  Google Scholar 

  • Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B et al. (2006). Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 26: 2130–2145.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Michiyuki Matsuda (Kyoto University) for providing the shRNAs targeting DOCK180 and the antibody against DOCK180, Dr Peter Davies (Albert Einstein College of Medicine) for Arg antibody and Novartis Pharmaceuticals for imatinib. We thank Kathryn Phoenix and Frank Vumbaca for the technical help. This work was supported by grants CA82258 (to BJM) and CA064436 (to KPC) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J Mayer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Machida, K., Antoku, S. et al. Proteins that bind the Src homology 3 domain of CrkI have distinct roles in Crk transformation. Oncogene 29, 6378–6389 (2010). https://doi.org/10.1038/onc.2010.369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.369

Keywords

This article is cited by

Search

Quick links