Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF

Abstract

The MUC1 cytoplasmic tail (MUC1.CT) conducts signals from spatial and extracellular cues (growth factor and cytokine stimulation) to evoke a reprogramming of the cellular transcriptional profile. Specific phosphorylated forms of the MUC1.CT achieve this function by differentially associating with transcription factors and redirecting their transcriptional regulatory capabilities at specific gene regulatory elements. The specificity of interaction between MUC1.CT and several transcription factors is dictated by the phosphorylation pattern of the 18 potential phosphorylation motifs within the MUC1.CT. To better appreciate the scope of differential gene expression triggered by MUC1.CT activation, we performed microarray gene expression analysis and chromatin immunoprecipitation (ChIP)–chip promoter analysis and identified the genome-wide transcriptional targets of MUC1.CT signaling in pancreatic cancer. On a global scale, MUC1.CT preferentially targets genes related to invasion, angiogenesis and metastasis, suggesting that MUC1.CT signaling contributes to establishing a reactive tumor microenvironment during tumor progression to metastatic disease. We examined in detail the molecular mechanisms of MUC1.CT signaling that induces the expression of connective tissue growth factor (CTGF/CCN2), a potent mediator of ECM remodeling and angiogenesis. We demonstrate a robust induction of CTGF synthesis and secretion in response to serum factors that is enabled only when MUC1 is highly expressed. We demonstrate the requirement of phosphorylation at distinct tyrosine motifs within the MUC1.CT for MUC1-induced CTGF expression and demonstrate a phosphorylation-specific localization of MUC1.CT to the CTGF promoter. We found that MUC1 reorganizes transcription factor occupancy of genomic regions upstream of the CTGF gene, directing β-catenin and mutant p53 to CTGF gene regulatory elements to promote CTGF expression and destabilizing the interaction at these regions of the transcriptional repressor, c-Jun. With this example we illustrate the capacity of MUC1.CT to mediate transcription factor activity in a context-dependent manner to achieve wide spread and robust changes in gene expression and facilitate creation of the reactive tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agata N, Ahmad R, Kawano T, Raina D, Kharbanda S, Kufe D . (2008). MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res 68: 6136–6144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aikawa T, Gunn J, Spong SM, Klaus SJ, Korc M . (2006). Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5: 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  • Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N et al. (2009). The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69: 775–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigstock DR . (2003). The CCN family: a new stimulus package. J Endocrinol 178: 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Burdick MD, Harris A, Reid CJ, Iwamura T, Hollingsworth MA . (1997). Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J Biol Chem 272: 24198–24202.

    Article  CAS  PubMed  Google Scholar 

  • Carson DD . (2008). The cytoplasmic tail of MUC1: a very busy place. Sci Signal 1: pe35.

    Article  PubMed  Google Scholar 

  • Chu CY, Chang CC, Prakash E, Kuo ML . (2008). Connective tissue growth factor (CTGF) and cancer progression. J Biomed Sci 15: 675–685.

    Article  CAS  PubMed  Google Scholar 

  • Deng YZ, Chen PP, Wang Y, Yin D, Koeffler HP, Li B et al. (2007). Connective tissue growth factor is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenicity through beta-catenin-T-cell factor/Lef signaling. J Biol Chem 282: 36571–36581.

    Article  CAS  PubMed  Google Scholar 

  • Gao J, McConnell MJ, Yu B, Li J, Balko JM, Black EP et al. (2009). MUC1 is a downstream target of STAT3 and regulates lung cancer cell survival and invasion. Int J Oncol 35: 337–345.

    CAS  PubMed  Google Scholar 

  • Gatto M, Drudi-Metalli V, Torrice A, Alpini G, Cantafora A, Blotta I et al. (2008). Insulin-like growth factor-1 isoforms in rat hepatocytes and cholangiocytes and their involvement in protection against cholestatic injury. Lab Invest 88: 986–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth MA, Swanson BJ . (2004). Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4: 45–60.

    Article  CAS  PubMed  Google Scholar 

  • Husson H, Carideo EG, Neuberg D, Schultze J, Munoz O, Marks PW et al. (2002). Gene expression profiling of follicular lymphoma and normal germinal center B cells using cDNA arrays. Blood 99: 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Iwamura T, Taniguchi S, Kitamura N, Yamanari H, Kojima A, Hidaka K et al. (1992). Correlation between CA19–9 production in vitro and histological grades of differentiation in vivo in clones isolated from a human pancreatic cancer cell line (SUIT-2). J Gastroenterol Hepatol 7: 512–519.

    Article  CAS  PubMed  Google Scholar 

  • Kohlgraf KG, Gawron AJ, Higashi M, Meza JL, Burdick MD, Kitajima S et al. (2003). Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res 63: 5011–5020.

    CAS  PubMed  Google Scholar 

  • Leask A, Holmes A, Black CM, Abraham DJ . (2003). Connective tissue growth factor gene regulation. requirements for its induction by transforming growth factor-beta 2 in fibroblasts. J Biol Chem 278: 13008–13015.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Bharti A, Chen D, Gong J, Kufe D . (1998). Interaction of glycogen synthase kinase 3beta with the DF3/MUC1 carcinoma-associated antigen and beta-catenin. Mol Cell Biol 18: 7216–7224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kuwahara H, Ren J, Wen G, Kufe D . (2001a). The c-src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-associated antigen with GSK3 beta and beta-catenin. J Biol Chem 276: 6061–6064.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L et al. (2001b). The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-src and beta-catenin. J Biol Chem 276: 35239–35242.

    Article  CAS  PubMed  Google Scholar 

  • Masaki Y, Oka M, Ogura Y, Ueno T, Nishihara K, Tangoku A et al. (1999). Sialylated MUC1 mucin expression in normal pancreas, benign pancreatic lesions, and pancreatic ductal adenocarcinoma. Hepatogastroenterology 46: 2240–2245.

    CAS  PubMed  Google Scholar 

  • Masuko K, Murata M, Yudoh K, Shimizu H, Beppu M, Nakamura H et al. (2010). Prostaglandin E2 regulates the expression of connective tissue growth factor (CTGF/CCN2) in human osteoarthritic chondrocytes via the EP4 receptor. BMC Res Notes 3: 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott KM, Crocker PR, Harris A, Burdick MD, Hinoda Y, Hayashi T et al. (2001). Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int J Cancer 94: 783–791.

    Article  CAS  PubMed  Google Scholar 

  • Pemberton LF, Rughetti A, Taylor-Papadimitriou J, Gendler SJ . (1996). The epithelial mucin MUC1 contains at least two discrete signals specifying membrane localization in cells. J Biol Chem 271: 2332–2340.

    Article  CAS  PubMed  Google Scholar 

  • Qu CF, Li Y, Song YJ, Rizvi SM, Raja C, Zhang D et al. (2004). MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by (213)bi-C595 radioimmunoconjugate. Br J Cancer 91: 2086–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina D, Ahmad R, Chen D, Kumar S, Kharbanda S, Kufe D . (2008). MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway. Cancer Biol Ther 7: 1959–1967.

    Article  CAS  PubMed  Google Scholar 

  • Shimo T, Nakanishi T, Nishida T, Asano M, Kanyama M, Kuboki T et al. (1999). Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem 126: 137–145.

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Behrens ME, Eggers JP, Cerny RL, Bailey JM, Shanmugam K et al. (2008). Phosphorylation of MUC1 by met modulates interaction with p53 and MMP1 expression. J Biol Chem 283: 26985–26995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Hollingsworth MA . (2006). Cell surface-associated mucins in signal transduction. Trends Cell Biol 16: 467–476.

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Wen Y, Swanson BJ, Shanmugam K, Kazlauskas A, Cerny RL et al. (2007). Platelet-derived growth factor receptor beta-mediated phosphorylation of MUC1 enhances invasiveness in pancreatic adenocarcinoma cells. Cancer Res 67: 5201–5210.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zeng XR, Wenger L, Firestein GS, Cheung HS . (2004). P53 down-regulates matrix metalloproteinase-1 by targeting the communications between AP-1 and the basal transcription complex. J Cell Biochem 92: 258–269.

    Article  CAS  PubMed  Google Scholar 

  • Takagi J, DeBottis DP, Erickson HP, Springer TA . (2002). The role of the specificity-determining loop of the integrin beta subunit I-like domain in autonomous expression, association with the alpha subunit, and ligand binding. Biochemistry 41: 4339–4347.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumida H, Swanson BJ, Singh PK, Caffrey TC, Kitajima S, Goto M et al. (2006). RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res 12: 2976–2987.

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu H, Kufe D . (2007). Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res 67: 1853–1858.

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu H, Kufe D . (2005). Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7: 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Caffrey TC, Wheelock MJ, Johnson KR, Hollingsworth MA . (2003). Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin. J Biol Chem 278: 38029–38039.

    Article  CAS  PubMed  Google Scholar 

  • Wenger C, Ellenrieder V, Alber B, Lacher U, Menke A, Hameister H et al. (1999). Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene 18: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  • Yang DH, Kim HS, Wilson EM, Rosenfeld RG, Oh Y . (1998). Identification of glycosylated 38-kDa connective tissue growth factor (IGFBP-related protein 2) and proteolytic fragments in human biological fluids, and up-regulation of IGFBP-rP2 expression by TGF-beta in Hs578T human breast cancer cells. J Clin Endocrinol Metab 83: 2593–2596.

    CAS  PubMed  Google Scholar 

  • Yi CH, Smith DJ, West WW, Hollingsworth MA . (2007). Loss of fibulin-2 expression is associated with breast cancer progression. Am J Pathol 170: 1535–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Liu X, Wong S, Machan JT, Chung MA . (2008). MUC1 knockdown with RNA interference inhibits pancreatic cancer growth. J Surg Res 157: e39–e46.

    Article  PubMed  Google Scholar 

  • Zarrinkalam KH, Stanley JM, Gray J, Oliver N, Faull RJ . (2003). Connective tissue growth factor and its regulation in the peritoneal cavity of peritoneal dialysis patients. Kidney Int 64: 331–338.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Hollingsworth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, M., Grandgenett, P., Bailey, J. et al. The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene 29, 5667–5677 (2010). https://doi.org/10.1038/onc.2010.327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.327

Keywords

This article is cited by

Search

Quick links