Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Accelerated DNA replication in E2F1- and E2F2-deficient macrophages leads to induction of the DNA damage response and p21CIP1-dependent senescence

Abstract

E2F1–3 proteins appear to have distinct roles in progenitor cells and in differentiating cells undergoing cell cycle exit. However, the function of these proteins in paradigms of terminal differentiation that involve continued cell division has not been examined. Using compound E2F1/E2F2-deficient mice, we have examined the effects of E2F1 and E2F2 loss on the differentiation and simultaneous proliferation of bone-marrow-derived cells toward the macrophage lineage. We show that E2F1/E2F2 deficiency results in accelerated DNA replication and cellular division during the initial cell division cycles of bone-marrow-derived cells, arguing that E2F1/E2F2 are required to restrain proliferation of pro-monocyte progenitors during their differentiation into macrophages, without promoting their cell cycle exit. Accelerated proliferation is accompanied by early expression of DNA replication and cell cycle regulators. Remarkably, rapid proliferation of E2F1/E2F2 compound mutant cultures is temporally followed by induction of a DNA damage response and the implementation of a p21CIP1-dependent senescence. We further show that differentiating E2F1/E2F2-knockout macrophages do not trigger a DNA damage response pathway in the absence of DNA replication. These findings underscore the relevance of E2F1 and E2F2 as suppressors of hematopoietic progenitor expansion. Our data indicate that their absence in differentiating macrophages initiates a senescence program that results from enforcement of a DNA damage response triggered by DNA hyper-replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aslanian A, Iaquinta PJ, Verona R, Lees JA . (2004). Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev 18: 1413–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balomenos D, Martín-Caballero J, García MI, Prieto I, Flores JM, Serrano M et al. (2000). The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat Med 6: 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. (2006). Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  • Brackman D, Lund-Johansen F, Aarskog D . (1995). Expression of leukocyte differentiation antigens during the differentiation of HL-60 cells induced by 1,25-dihydroxyvitamin D3: comparison with the maturation of normal monocytic and granulocytic bone marrow cells. J Leukoc Biol 58: 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Braun SE, Mantel C, Rosenthal M, Cooper S, Liu L, Robertson KA et al. (1998). A positive effect of p21cip1/waf1 in the colony formation from murine myeloid progenitor cells as assessed by retroviral-mediated gene transfer. Blood Cells Mol Dis 24: 138–148.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J . (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120: 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Celada A, Borràs FE, Soler C, Lloberas J, Klemsz M, van Beveren C et al. (1996). The transcription factor PU.1 is involved in macrophage proliferation. J Exp Med 184: 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Pacal M, Wenzel P, Knoepfler PS, Leone G, Bremner R . (2009). Division and apoptosis of E2f-deficient retinal progenitors. Nature 462: 925–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong JL, Wenzel PL, Sáenz-Robles MT, Nair V, Ferrey A, Hagan JP et al. (2009). E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462: 930–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    Article  CAS  PubMed  Google Scholar 

  • Davidson IF, Li A, Blow JJ . (2006). Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol Cell 24: 433–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  • Dimova DK, Dyson NJ . (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24: 2810–2826.

    Article  CAS  PubMed  Google Scholar 

  • Dirlam A, Spike BT, Macleod KF . 2007. Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts. Mol Cell Biol 27: 8713–8728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekholm-Reed S, Méndez J, Tedesco D, Zetterberg A, Stillman B, Reed SI . (2004). Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165: 789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, Livingston DM et al. (1996). E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85: 549–561.

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM . (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14: 501–513.

    Article  CAS  PubMed  Google Scholar 

  • Hwang HC, Clurman BE . (2005). Cyclin E in normal and neoplastic cell cycles. Oncogene 24: 2776–2786.

    Article  CAS  PubMed  Google Scholar 

  • Iglesias A, Murga M, Laresgoiti U, Skoudy A, Bernales I, Fullaondo A et al. (2004). Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice. J Clin Invest 113: 1398–1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infante A, Laresgoiti U, Fernández-Rueda J, Fullaondo A, Galán J, Díaz-Uriarte R et al. (2008). E2F2 represses cell cycle regulators to maintain quiescence. Cell Cycle 7: 3915–3927.

    Article  CAS  PubMed  Google Scholar 

  • Kinross KM, Clark AJ, Iazzolino RM, Humbert PO . (2006). E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation. Blood 108: 886–895.

    Article  CAS  PubMed  Google Scholar 

  • Lazzerini Denchi E, Attwooll C, Pasini D, Helin K . (2005). Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25: 2660–2672.

    Article  PubMed  Google Scholar 

  • Li FX, Zhu JW, Hogan CJ, DeGregori J . (2003). Defective gene expression, S phase progression, and maturation during hematopoiesis in E2F1/E2F2 mutant mice. Mol Cell Biol 23: 3607–3622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, VanHoy RW, Zhou JH, Dantzer R, Freund GG, Kelley KW . (1999). Elevated cyclin E levels, inactive retinoblastoma protein, and suppression of the p27(KIP1) inhibitor characterize early development of promyeloid cells into macrophages. Mol Cell Biol 19: 6229–6239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Cepero E, Evan G . (2004). Intrinsic tumour suppression. Nature 432: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Lukas J, Bartkova J, Bartek J . (1996). Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D–cyclin-dependent kinase-pRb-controlled G1 checkpoint. Mol Cell Biol 16: 6917–6925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS et al. (2008). E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455: 552–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murga M, Fernández-Capetillo O, Field SJ, Moreno B, Borlado LR, Fujiwara Y et al. (2001). Mutation of E2F2 in mice causes enhanced T lymphocyte proliferation, leading to the development of autoimmunity. Immunity 15: 959–970.

    Article  CAS  PubMed  Google Scholar 

  • Olsen CL, Gardie B, Yaswen P, Stampfer MR . (2002). Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene 21: 6328–6339.

    Article  CAS  PubMed  Google Scholar 

  • Paulson QX, Pusapati RV, Hong S, Weaks RL, Conti CJ, Johnson DG . (2008). Transgenic expression of E2F3a causes DNA damage leading to ATM-dependent apoptosis. Oncogene 27: 4954–4961.

    Article  CAS  PubMed  Google Scholar 

  • Pusapati RV, Weaks RL, Rounbehler RJ, McArthur MJ, Johnson DG . (2010). E2F2 suppresses Myc-induced proliferation and tumorigenesis. Mol Carcinogen 49: 152–156.

    CAS  Google Scholar 

  • Scheijen B, Bronk M, van der Meer T, De Jong D, Bernards R . (2004). High incidence of thymic epithelial tumors in E2F2 transgenic mice. J Biol Chem 279: 10476–11083.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe W . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J et al. (2007). E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol 27: 65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZM, Yang H, Livingston DM . (1998). Endogenous E2F-1 promotes timely G0 exit of resting mouse embryo fibroblasts. Proc Natl Acad Sci USA 95: 15583–15586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. (2001). The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414: 457–462.

    Article  CAS  PubMed  Google Scholar 

  • Xaus J, Cardó M, Valledor AF, Soler C, Lloberas J, Celada A . (1999). Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 11: 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Young AP, Nagarajan R, Longmore GD . (2003). Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathway. Oncogene 22: 7209–7217.

    Article  CAS  PubMed  Google Scholar 

  • Zhu JW, Field SJ, Gore L, Thompson M, Yang H, Fujiwara Y et al. (2001). E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol Cell Biol 21: 8547–8564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Zubiaga laboratory for helpful discussions, Naiara Zorrilla for technical support and Dimitri Balomenos for p21CIP1−/− mice. AI is a recipient of the University of the Basque Country postdoctoral fellowship. OZ and JF are recipients of Basque Government fellowships for graduate students. This work was supported by grants to AMZ from the Spanish Ministry of Science and Innovation (SAF2009-12037 and Consolider-Ingenio 2010 Programme, CSD2007-00017) and the Basque Government Department of Industry (Etortek-IE06-178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Zubiaga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias-Ara, A., Zenarruzabeitia, O., Fernandez-Rueda, J. et al. Accelerated DNA replication in E2F1- and E2F2-deficient macrophages leads to induction of the DNA damage response and p21CIP1-dependent senescence. Oncogene 29, 5579–5590 (2010). https://doi.org/10.1038/onc.2010.296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.296

Keywords

This article is cited by

Search

Quick links