Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells

Abstract

Abrogation of functional p53 is responsible for malignant cell transformation and the maintenance of malignant state of human papillomavirus-infected cancer cells. Thus, restoration of p53 has been regarded as an important strategy for molecular intervention combating papillomavirus-associated malignancies. We show here that depleting cyclin B1 stabilizes and reactivates p53 in papillomavirus-infected cervical cancer cell lines HeLa and CaSki. HeLa cells depleted of cyclin B1 exhibit mitotic defects in spindle formation and chromosome alignment. Downregulation of cyclin B1 increases p14 alternative reading frame of p16, the positive regulator of p53, and decreases phosphorylation of Ser315 in p53. Whereas RO-3306, a selective inhibitor of cyclin-dependent kinase 1 (Cdk1), suppresses this phosphorylation at Ser315 of p53, ZM447439, targeting Aurora A/B kinases, shows no effect. Further analyses in HeLa cells and HCT116 p53(−/−) cells suggest that the Ser315 phosphorylation by Cdk1 regulates negatively the protein stability and the function of p53. Moreover, increased p53 in HeLa cells is functional by showing its increased downstream effectors p21, mouse double minute 2 and Bax. Restoration of p53 and silencing cyclin B1 render cervical carcinoma cells more susceptible to DNA damage agent camptothecin. Taken together, targeting cyclin B1 might be an attractive strategy for preventing and treating papillomavirus-associated cancer by reactivating p53 and by reducing the Cdk1 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

p14ARF:

p14 alternative reading frame of p16

Cdk1:

cyclin-dependent kinase 1

HPV 16/18:

human papillomavirus type 16/18

MDM2:

mouse double minute 2

shRNA:

small hairpin RNA

References

  • Androic I, Kramer A, Yan R, Rodel F, Gatje R, Kaufmann M et al. (2008). Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol. BMC Cancer 8: 391.

    Article  Google Scholar 

  • Aylon Y, Oren M . (2007). Living with p53, dying of p53. Cell 130: 597–600.

    Article  CAS  Google Scholar 

  • Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D . (1990). Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 87: 4766–4770.

    Article  CAS  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP . (2009). Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9: 862–873.

    Article  CAS  Google Scholar 

  • Butz K, Shahabeddin L, Geisen C, Spitkovsky D, Ullmann A, Hoppe-Seyler F . (1995). Functional p53 protein in human papillomavirus-positive cancer cells. Oncogene 10: 927–936.

    CAS  PubMed  Google Scholar 

  • Cho NH, Kang S, Hong S, An HJ, Choi YH, Jeong GB et al. (2006). Elevation of cyclin B1, active cdc2, and HuR in cervical neoplasia with human papillomavirus type 18 infection. Cancer Lett 232: 170–178.

    Article  CAS  Google Scholar 

  • Demidenko ZN, Blagosklonny MV . (2004). Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor. Cancer Res 64: 3653–3660.

    Article  CAS  Google Scholar 

  • Dickson MA, Schwartz GK . (2009). Development of cell-cycle inhibitors for cancer therapy. Curr Oncol 16: 36–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs B, Hecker D, Scheidtmann KH . (1995). Phosphorylation studies on rat p53 using the baculovirus expression system. Manipulation of the phosphorylation state with okadaic acid and influence on DNA binding. Eur J Biochem 228: 625–639.

    Article  CAS  Google Scholar 

  • Gallagher SJ, Kefford RF, Rizos H . (2006). The ARF tumour suppressor. Int J Biochem Cell Biol 38: 1637–1641.

    Article  CAS  Google Scholar 

  • Hietanen S, Lain S, Krausz E, Blattner C, Lane DP . (2000). Activation of p53 in cervical carcinoma cells by small molecules. Proc Natl Acad Sci USA 97: 8501–8506.

    Article  CAS  Google Scholar 

  • Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F et al. (2004). Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36: 55–62.

    Article  CAS  Google Scholar 

  • Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW et al. (2005). Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25: 1258–1271.

    Article  CAS  Google Scholar 

  • Kreis NN, Sommer K, Sanhaji M, Kramer A, Matthess Y, Kaufmann M et al. (2009). Long-term downregulation of Polo-like kinase 1 increases the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). Cell Cycle 8: 460–472.

    Article  CAS  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  Google Scholar 

  • Lu W, Chen L, Peng Y, Chen J . (2001). Activation of p53 by roscovitine-mediated suppression of MDM2 expression. Oncogene 20: 3206–3216.

    Article  CAS  Google Scholar 

  • Pathirana D, Hillemanns P, Petry KU, Becker N, Brockmeyer NH, Erdmann R et al. (2009). Short version of the German evidence-based guidelines for prophylactic vaccination against HPV-associated neoplasia. Vaccine 27: 4551–4559.

    Article  CAS  Google Scholar 

  • Pluquet O, Qu LK, Baltzis D, Koromilas AE . (2005). Endoplasmic reticulum stress accelerates p53 degradation by the cooperative actions of Hdm2 and glycogen synthase kinase 3beta. Mol Cell Biol 25: 9392–9405.

    Article  CAS  Google Scholar 

  • Radhakrishnan SK, Gartel AL . (2006). CDK9 phosphorylates p53 on serine residues 33, 315 and 392. Cell Cycle 5: 519–521.

    Article  CAS  Google Scholar 

  • Rampias T, Sasaki C, Weinberger P, Psyrri A . (2009). E6 and E7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst 101: 412–423.

    Article  CAS  Google Scholar 

  • Sanhaji M, Friel CT, Kreis NN, Kramer A, Martin C, Howard J et al. (2010). Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 30: 2594–2607.

    Article  CAS  Google Scholar 

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505.

    Article  CAS  Google Scholar 

  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  CAS  Google Scholar 

  • Sharpless NE . (2005). INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576: 22–38.

    Article  CAS  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.

    Article  CAS  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Wang Y, Prives C . (1995). Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376: 88–91.

    Article  CAS  Google Scholar 

  • Yuan J, Kramer A, Matthess Y, Yan R, Spankuch B, Gatje R et al. (2006). Stable gene silencing of cyclin B1 in tumor cells increases susceptibility to taxol and leads to growth arrest in vivo. Oncogene 25: 1753–1762.

    Article  CAS  Google Scholar 

  • Yuan J, Yan R, Kramer A, Eckerdt F, Roller M, Kaufmann M et al. (2004). Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene 23: 5843–5852.

    Article  CAS  Google Scholar 

  • Zhao M, Kim YT, Yoon BS, Kim SW, Kang MH, Kim SH et al. (2006). Expression profiling of cyclin B1 and D1 in cervical carcinoma. Exp Oncol 28: 44–48.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Deutsche Krebshilfe (#107594 and #108553). We are grateful to Dr B Vogelstein, Ludwig Center at Johns Hopkins, Howard Hughes Medical Institute, Baltimore, for HCT116 p53(+/+) and p53(−/−) cell lines, and Dr K Hoppe-Seyler, Deutsches Krebsforschungszentrum, Heidelberg, for CaSki cell line. We thank Ms Roth and Ms Zimmer for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yuan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreis, N., Sanhaji, M., Krämer, A. et al. Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells. Oncogene 29, 5591–5603 (2010). https://doi.org/10.1038/onc.2010.290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.290

Keywords

This article is cited by

Search

Quick links