Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The stromal gene encoding the CD274 antigen as a genetic modifier controlling survival of mice with γ-radiation-induced T-cell lymphoblastic lymphomas

Abstract

Using an inter-specific subcongenic strain, Nested Recombinant Haplotype 3 (NRH3), generated between two mouse strains showing extreme differences in γ-radiation-induced thymic lymphoma susceptibility (SEG/Pas and C57BL/6J), we have identified a critical region on chromosome 19 that regulates survival of mice suffering from T-cell lymphoblastic lymphomas. Mapped on this region, the gene encoding the Cd274 ligand is able to trigger an inhibitory effect that modulates T-cell receptor (TCR) signalling and affects thymocyte maturation. Interestingly, this gene shows differential expression between thymic stromal cells from both strains in early response to a single sublethal γ-ray dose, but is inhibited in T-cell lymphoblastic lymphomas. Furthermore, we have identified several polymorphisms in the complementary DNA sequence of this gene that affect the affinity for its Cd279 receptor and are able to induce a differential rate of thymocyte apoptosis. Taken together, our data are consistent with Cd274 acting as a genetic modifier that influences the survival of γ-radiation-induced T-cell lymphoma-bearing mice. The data similarly support the idea of a co-evolution of tumour cells and associated stromal cells to generate a favourable microenvironment for T-cell lymphoma growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Aifantis I, Raetz E, Buonamici S . (2008). Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8: 380–390.

    Article  CAS  Google Scholar 

  • Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6: 17–32.

    Article  CAS  Google Scholar 

  • Anderson G, Jenkinson EJ . (2001). Lymphostromal interactions in thymic development and function. Nat Rev Immunol 1: 31–40.

    Article  CAS  Google Scholar 

  • Balmain A . (2002). Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell 108: 145–152.

    Article  CAS  Google Scholar 

  • Bian Y, Knobloch TJ, Sadim M, Kaklamani V, Raji A, Yang GY et al. (2007). Somatic acquisition of TGFBR1*6A by epithelial and stromal cells during head and neck and colon cancer development. Hum Mol Genet 16: 3128–3135.

    Article  CAS  Google Scholar 

  • Blank C, Mackensen A . (2007). Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56: 739–745.

    Article  Google Scholar 

  • Brathwaite O, Bayona W, Newcomb EW . (1992). p53 mutations in C57BL/6J murine thymic lymphomas induced by gamma-irradiation and N-methylnitrosourea. Cancer Res 52: 3791–3795.

    CAS  Google Scholar 

  • Burgio G, Szatanik M, Guenet JL, Arnau MR, Panthier JJ, Montagutelli X . (2007). Interspecific recombinant congenic strains between C57BL/6 and mice of the Mus spretus species: a powerful tool to dissect genetic control of complex traits. Genetics 177: 2321–2333.

    Article  CAS  Google Scholar 

  • Cormier RT, Bilger A, Lillich AJ, Halberg RB, Hong KH, Gould KA et al. (2000). The Mom1AKR intestinal tumor resistance region consists of Pla2g2a and a locus distal to D4Mit64. Oncogene 19: 3182–3192.

    Article  CAS  Google Scholar 

  • Devereux TR, Wiseman RW, Kaplan N, Garren S, Foley JF, White CM et al. (1994). Assignment of a locus for mouse lung tumor susceptibility to proximal chromosome 19. Mamm Genome 5: 749–755.

    Article  CAS  Google Scholar 

  • Diamond LE, Sloan SR, Pellicer A, Hayday AC . (1988). T-cell receptor gene rearrangement in primary tumors: effect of genetic background and inducing agent. Immunogenetics 28: 71–80.

    Article  CAS  Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. (2002). Tumor associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8: 793–800.

    Article  CAS  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L . (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5: 1365–1369.

    Article  CAS  Google Scholar 

  • Elahi E, Suraweera N, Volikos E, Haines J, Brown N, Davidson G et al. (2009). Five quantitative trait loci control radiation-induced adenoma multiplicity in Mom1R Apc Min/+ mice. PLoS One 4: e4388.

    Article  Google Scholar 

  • Gray DH, Chidgey AP, Boyd RL . (2002). Analysis of thymic stromal cell populations using flow cytometry. J Immunol Methods 260: 15–28.

    Article  CAS  Google Scholar 

  • Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K et al. (2007). Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104: 3360–3365.

    Article  CAS  Google Scholar 

  • Hare KJ, Jenkinson EJ, Anderson G . (1999). CD69 expression discriminates MHC-dependent and -independent stages of thymocyte positive selection. J Immunol 162: 3978–3983.

    CAS  PubMed  Google Scholar 

  • Inman BA, Sebo TJ, Frigola X, Dong H, Bergstralh EJ, Frank I et al. (2007). PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109: 1499–1505.

    Article  CAS  Google Scholar 

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N . (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99: 12293–12297.

    Article  CAS  Google Scholar 

  • Jawad M, Giotopoulos G, Fitch S, Cole C, Plumb M, Talbot CJ . (2007). Mouse bone marrow and peripheral blood erythroid cell counts are regulated by different autosomal genetic loci. Blood Cells Mol Dis 38: 69–77.

    Article  CAS  Google Scholar 

  • Keir ME, Latchman YE, Freeman GJ, Sharpe AH . (2005). Programmed death-1 (PD1):PD-ligand 1 interactions inhibit TCR-mediated positive selection of thymocytes. J Immunol 175: 7372–7379.

    Article  CAS  Google Scholar 

  • Kodama Y, Yoshikai Y, Tamura Y, Wakana S, Takagi R, Niwa O et al. (2004). The D5Mit7 locus on mouse chromosome 5 provides resistance to gamma-ray induced but not N-methyl-N-nitrosourea-induced thymic lymphomas. Carcinogenesis 25: 143–148.

    Article  CAS  Google Scholar 

  • Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C . (2002). Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32: 355–357.

    Article  CAS  Google Scholar 

  • Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. (2008). Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359: 2313–2323.

    Article  CAS  Google Scholar 

  • Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ et al. (2003). Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33: 2706–2716.

    Article  CAS  Google Scholar 

  • Lwin T, Hazlehurst LA, Li Z, Dessureault S, Sotomayor E, Moscinski LC et al. (2007). Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-kappaB (RelB/p52) in non-Hodgkin's lymphoma cells. Leukemia 21: 1521–1531.

    Article  CAS  Google Scholar 

  • Mao JH, Balmain A . (2003). Genomic approaches to identification of tumour-susceptibility genes using mouse models. Curr Opin Genet Dev 13: 14–19.

    Article  CAS  Google Scholar 

  • Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M et al. (2008). Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA 105: 20852–20857.

    Article  CAS  Google Scholar 

  • Matin A, Collin GB, Asada Y, Varnum D, Nadeau JH . (1999). Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nat Genet 23: 237–240.

    Article  CAS  Google Scholar 

  • Mori N, Okumoto M, Yamate J . (2000). A susceptibility locus for radiation lymphomagenesis on mouse chromosome 16. J Radiat Res (Tokyo) 41: 367–372.

    Article  CAS  Google Scholar 

  • Muhlbauer M, Fleck M, Schutz C, Weiss T, Froh M, Blank C et al. (2006). PD-L1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol 45: 520–528.

    Article  Google Scholar 

  • Nishimura H, Honjo T, Minato N . (2000). Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice. J Exp Med 191: 891–898.

    Article  CAS  Google Scholar 

  • Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al. (2007). Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13: 2151–2157.

    Article  CAS  Google Scholar 

  • Ochiai Y, Tamura Y, Saito Y, Matsuki A, Wakabayashi Y, Aizawa Y et al. (2003). Mapping of genetic modifiers of thymic lymphoma development in p53knockout mice. Oncogene 22: 1098–1102.

    Article  CAS  Google Scholar 

  • Ogawa K, Boucher Y, Kashiwagi S, Fukumura D, Chen D, Gerweck LE . (2007). Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res 67: 4016–4021.

    Article  CAS  Google Scholar 

  • Oka S, Kubo K, Matsuyama S, Takamori Y . (1999). Flow cytometric analysis of thymocyte subpopulations in mice after whole-body X-irradiation. J Vet Med Sci 61: 709–712.

    Article  CAS  Google Scholar 

  • Patocs A, Zhang L, Xu Y, Weber F, Caldes T, Mutter GL et al. (2007). Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 357: 2543–2551.

    Article  CAS  Google Scholar 

  • Pelham RJ, Rodgers L, Hall I, Lucito R, Nguyen KC, Navin N et al. (2006). Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proc Natl Acad Sci USA 103: 19848–19853.

    Article  CAS  Google Scholar 

  • Saito Y, Ochiai Y, Kodama Y, Tamura Y, Togashi T, Kosugi-Okano H et al. (2001). Genetic loci controlling susceptibility to gamma-ray-induced thymic lymphoma. Oncogene 20: 5243–5247.

    Article  CAS  Google Scholar 

  • Sandlund JT, Downing JR, Crist WM . (1996). Non-Hodgkin's lymphoma in childhood. N Engl J Med 334: 1238–1248.

    Article  CAS  Google Scholar 

  • Santos J, Gonzalez-Sanchez L, Matabuena-Deyzaguirre M, Villa-Morales M, Cozar P, Lopez-Nieva P et al. (2009). A role for stroma-derived annexin A1 as mediator in the control of genetic susceptibility to T-cell lymphoblastic malignancies through prostaglandin E2 secretion. Cancer Res 69: 2577–2587.

    Article  CAS  Google Scholar 

  • Santos J, Herranz M, Fernandez M, Vaquero C, Lopez P, Fernandez-Piqueras J . (2001). Evidence of a possible epigenetic inactivation mechanism operating on a region of mouse chromosome 19 in gamma-radiation-induced thymic lymphomas. Oncogene 20: 2186–2189.

    Article  CAS  Google Scholar 

  • Santos J, Montagutelli X, Acevedo A, Lopez P, Vaquero C, Fernandez M et al. (2002). A new locus for resistance to gamma-radiation-induced thymic lymphoma identified using inter-specific consomic and inter-specific recombinant congenic strains of mice. Oncogene 21: 6680–6683.

    Article  CAS  Google Scholar 

  • Villa-Morales M, Santos J, Fernandez-Piqueras J . (2006). Functional Fas (Cd95/Apo-1) promoter polymorphisms in inbred mouse strains exhibiting different susceptibility to gamma-radiation-induced thymic lymphoma. Oncogene 25: 2022–2029.

    Article  CAS  Google Scholar 

  • Villa-Morales M, Santos J, Perez-Gomez E, Quintanilla M, Fernandez-Piqueras J . (2007). A role for the Fas/FasL system in modulating genetic susceptibility to T-cell lymphoblastic lymphomas. Cancer Res 67: 5107–5116.

    Article  CAS  Google Scholar 

  • Wang M, Lemon WJ, Liu G, Wang Y, Iraqi FA, Malkinson AM et al. (2003a). Fine mapping and identification of candidate pulmonary adenoma susceptibility 1 genes using advanced intercross lines. Cancer Res 63: 3317–3324.

    CAS  PubMed  Google Scholar 

  • Wang S, Bajorath J, Flies DB, Dong H, Honjo T, Chen L . (2003b). Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med 197: 1083–1091.

    Article  CAS  Google Scholar 

  • Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R et al. (2003). Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63: 7462–7467.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission contract number FI6R-CT2003-508842 to JS and by the Spanish Ministry of Education and Science contract number SAF-2006-09437 and SAF2009-11426 to JFP. We thank Arturo Morales for the critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Santos or J Fernández-Piqueras.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J., González-Sánchez, L., Villa-Morales, M. et al. The stromal gene encoding the CD274 antigen as a genetic modifier controlling survival of mice with γ-radiation-induced T-cell lymphoblastic lymphomas. Oncogene 29, 5265–5273 (2010). https://doi.org/10.1038/onc.2010.280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.280

Keywords

Search

Quick links