Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The cell polarity regulator hScrib controls ERK activation through a KIM site-dependent interaction

Abstract

The cell polarity regulator, human Scribble (hScrib), is a potential tumour suppressor whose loss is a frequent event in late-stage cancer development. Little is yet known about the mode of action of hScrib, although recent reports suggest its role in the regulation of cell signalling. In this study we show that hScrib is a direct regulator of extracellular signal-regulated kinase (ERK). In human keratinocytes, loss of hScrib results in elevated phospho-ERK levels and concomitant increased nuclear translocation of phospho-ERK. We also show that hScrib interacts with ERK through two well-conserved kinase interaction motif (KIM) docking sites, both of which are also required for ERK-induced phosphorylation of hScrib on two distinct residues. Although wild-type hScrib can downregulate activation of ERK and oncogenic Ras co-transforming activity, an hScrib mutant that lacks the carboxy terminal KIM docking site has no such effects. These results provide a clear mechanistic explanation of how hScrib can regulate ERK signalling and begin to explain how loss of hScrib during cancer development can contribute to disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bilder D . (2004). Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 18: 1909–1925.

    Article  CAS  PubMed  Google Scholar 

  • Bilder D, Li M, Perrimon N . (2000). Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289: 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Chen RH, Sarnecki C, Blenis J . (1992). Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12: 915–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO . (2008). Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. Oncogene 27: 5988–6001.

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Richardson BC . (2005). The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6: 322–327.

    Article  CAS  PubMed  Google Scholar 

  • Fantz DA, Jacobs D, Glossip D, Kornfeld K . (2001). Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J Biol Chem 276: 27256–27265.

    Article  CAS  PubMed  Google Scholar 

  • Fincham VJ, James M, Frame MC, Winder SJ . (2000). Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. EMBO J 19: 2911–2923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda M, Gotoh Y, Nishida E . (1997). Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J 16: 1901–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiol D, Kuhne C, Glaunsinger B, Lee SS, Javier R, Banks L . (1999). Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18: 5487–5496.

    Article  CAS  PubMed  Google Scholar 

  • Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L . (2006). Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 119: 1285–1290.

    Article  CAS  PubMed  Google Scholar 

  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R . (2005). Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 20: 963–969.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ . (1993). Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol 122: 1089–1101.

    Article  CAS  PubMed  Google Scholar 

  • Graham FL, van der Eb AJ . (1973). A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467.

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Kolch W . (2000). Cell-type specific integration of cross-talk between extracellular signal-regulated kinase and cAMP signaling. Mol Pharmacol 58: 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E et al. (1998). Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605–615.

    Article  CAS  PubMed  Google Scholar 

  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M . (1997). Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 94: 11612–11616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    Article  CAS  PubMed  Google Scholar 

  • Lenormand P, Sardet C, Pages G, L′Allemain G, Brunet A, Pouyssegur J . (1993). Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 122: 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie SJ, Baillie GS, McPhee I, Bolger GB, Houslay MD . (2000). ERK2 mitogen-activated protein kinase binding, phosphorylation, and regulation of the PDE4D cAMP-specific phosphodiesterases. The involvement of COOH-terminal docking sites and NH2-terminal UCR regions. J Biol Chem 275: 16609–16617.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Massimi P, Narayan N, Cuenda A, Banks L . (2006). Phosphorylation of the discs large tumour suppressor protein controls its membrane localisation and enhances its susceptibility to HPV E6-induced degradation. Oncogene 25: 4276–4285.

    Article  CAS  PubMed  Google Scholar 

  • Massimi P, Narayan N, Thomas M, Gammoh N, Strand S, Strand D et al. (2008). Regulation of the hDlg/hScrib/Hugl-1 tumour suppressor complex. Exp Cell Res 314: 3306–3317.

    Article  CAS  PubMed  Google Scholar 

  • Nagasaka K, Nakagawa S, Yano T, Takizawa S, Matsumoto Y, Tsuruga T et al. (2006). Human homolog of Drosophila tumor suppressor Scribble negatively regulates cell-cycle progression from G1 to S phase by localizing at the basolateral membrane in epithelial cells. Cancer Sci 97: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Huibregtse JM . (2000). Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20: 8244–8253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Yano T, Nakagawa K, Takizawa S, Suzuki Y, Yasugi T et al. (2004). Analysis of the expression and localisation of a LAP protein, human scribble, in the normal and neoplastic epithelium of uterine cervix. Br J Cancer 90: 194–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro C, Nola S, Audebert S, Santoni MJ, Arsanto JP, Ginestier C et al. (2005). Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene 24: 4330–4339.

    Article  CAS  PubMed  Google Scholar 

  • Nola S, Sebbagh M, Marchetto S, Osmani N, Nourry C, Audebert S et al. (2008). Scrib regulates PAK activity during the cell migration process. Hum Mol Genet 17: 3552–3565.

    Article  CAS  PubMed  Google Scholar 

  • Pearson RB, Kemp BE . (1991). Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 200: 62–81.

    Article  CAS  PubMed  Google Scholar 

  • Pouyssegur J, Volmat V, Lenormand P . (2002). Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64: 755–763.

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Capaldo C, Gumbiner BM, Macara IG . (2005). The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 171: 1061–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabio G, Arthur J, Kuma Y, Peggie M, Carr J, Murray-Tait V et al. (2005). p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J 24: 1134–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer HJ, Weber MJ . (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435–2444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanoue T, Adachi M, Moriguchi T, Nishida E . (2000). A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2: 110–116.

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Massimi P, Navarro C, Borg JP, Banks L . (2005). The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene 24: 6222–6230.

    Article  CAS  PubMed  Google Scholar 

  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E . (2004). Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7: 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Torii S, Yamamoto T, Tsuchiya Y, Nishida E . (2006). ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci 97: 697–702.

    Article  CAS  PubMed  Google Scholar 

  • Treisman R . (1996). Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8: 205–215.

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Seger R . (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44.

    Article  CAS  PubMed  Google Scholar 

  • Zeitler J, Hsu CP, Dionne H, Bilder D . (2004). Domains controlling cell polarity and proliferation in the Drosophila tumor suppressor Scribble. J Cell Biol 167: 1137–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB et al. (2008). Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 135: 865–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Sun L, Humphreys J, Goldsmith EJ . (2006). Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14: 1011–1019.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yoshida (YKK) Scholarship Foundation (to KN) and by a research grant from the Associazione Italiana per la Ricerca sul Cancro (to LB). We are also very grateful to David Allen (Nextgen Sciences) for his kind support and advice on the phospho-mapping analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Nagasaka or L Banks.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasaka, K., Pim, D., Massimi, P. et al. The cell polarity regulator hScrib controls ERK activation through a KIM site-dependent interaction. Oncogene 29, 5311–5321 (2010). https://doi.org/10.1038/onc.2010.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.265

Keywords

This article is cited by

Search

Quick links