Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 regulates the transcription of its Δ133p53 isoform through specific response elements contained within the TP53 P2 internal promoter

Abstract

The tumor suppressor p53 protein is activated by genotoxic stress and regulates genes involved in senescence, apoptosis and cell-cycle arrest. Nine p53 isoforms have been described that may modulate suppressive functions of the canonical p53 protein. Among them, Δ133p53 lacks the 132 proximal residues and has been shown to modulate p53-induced apoptosis and cell-cycle arrest. Δ133p53 is expressed from a specific mRNA, p53I4, driven by an alternative promoter P2 located between intron 1 and exon 5 of TP53 gene. Here, we report that the P2 promoter is regulated in a p53-dependent manner. Δ133p53 expression is increased in response to DNA damage by doxorubicin in p53 wild-type cell lines, but not in p53-mutated cells. Chromatin immunoprecipitation and luciferase assays using P2 promoter deletion constructs indicate that p53 binds functional response elements located within the P2 promoter. We also show that Δ133p53 does not bind specifically to p53 consensus DNA sequence in vitro, but competes with wild-type p53 in specific DNA-binding assays. Finally, we report that Δ133p53 counteracts p53-dependent growth suppression in clonogenic assays. These observations indicate that Δ133p53 is a novel target of p53 that may participate in a negative feedback loop controlling p53 function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bacus SS, Yarden Y, Oren M, Chin DM, Lyass L, Zelnick CR et al. (1996). Neu differentiation factor (Heregulin) activates a p53-dependent pathway in cancer cells. Oncogene 12: 2535–2547.

    CAS  PubMed  Google Scholar 

  • Boldrup L, Bourdon JC, Coates PJ, Sjostrom B, Nylander K . (2007). Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur J Cancer 43: 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdon JC . (2007). p53 and its isoforms in cancer. Br J Cancer 97: 277–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartharius K, Frech K, Grote K, Klocke B . (2005). MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21: 2933–2942.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ng SM, Chang C, Zhang Z, Bourdon JC, Lane DP et al. (2009). p53 isoform delta113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev 23: 278–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W et al. (2005). Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 19: 2900–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  PubMed  Google Scholar 

  • Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U et al. (2002). DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21: 6722–6728.

    Article  CAS  PubMed  Google Scholar 

  • Danilova N, Sakamoto KM, Lin S . (2008). Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 112: 5228–5237.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Stewart D, Matlashewski G . (2004). Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 24: 7987–7997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F et al. (2001). Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8: 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • Harmes DC, Bresnick E, Lubin EA, Watson JK, Heim KE, Curtin JC et al. (2003). Positive and negative regulation of deltaN-p63 promoter activity by p53 and deltaN-p63-alpha contributes to differential regulation of p53 target genes. Oncogene 22: 7607–7616.

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Hurd C, Khattree N, Dinda S, Alban P, Moudgil VK . (1997). Regulation of tumor suppressor proteins, p53 and retinoblastoma, by estrogen and antiestrogens in breast cancer cells. Oncogene 15: 991–995.

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto O, Kawahara C, Enjo K, Obinata M, Nukiwa T, Ikawa S . (2002). Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res 62: 636–641.

    CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819.

    Article  CAS  PubMed  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  • Marcel V, Hainaut P . (2009). p53 isoforms—a conspiracy to kidnap p53 tumor suppressor activity? Cell Mol Life Sci 66: 391–406.

    Article  CAS  PubMed  Google Scholar 

  • Menendez D, Inga A, Jordan JJ, Resnick MA . (2007). Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson. Oncogene 26: 2191–2201.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Murray-Zmijewski F, Lane DP, Bourdon JC . (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13: 962–972.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M . (2007). TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26: 2157–2165.

    Article  CAS  PubMed  Google Scholar 

  • Tuck SP, Crawford L . (1989). Characterization of the human p53 gene promoter. Mol Cell Biol 9: 2163–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhaegh GW, Richard MJ, Hainaut P . (1997). Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol Cell Biol 17: 5699–5706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, Müllauer F, Böck G, Ausserlechner MJ et al. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  • Vousden K . (2006). Outcomes of p53 activation—spoilt for choice. J Cell Sci 119: 5015–5020.

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

VM is supported by la Ligue National Contre le Cancer. LF-C is supported by The Association for International Cancer Research (AICR). This project is funded by la Ligue Régionale du Rhône Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Hainaut.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcel, V., Vijayakumar, V., Fernández-Cuesta, L. et al. p53 regulates the transcription of its Δ133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene 29, 2691–2700 (2010). https://doi.org/10.1038/onc.2010.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.26

Keywords

This article is cited by

Search

Quick links