Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Recent advances in the molecular pathogenesis of Ewing's sarcoma

Abstract

Tumor development is a complex process resulting from interplay between mutations in oncogenes and tumor suppressors, host susceptibility factors, and cellular context. Great advances have been made by studying rare tumors with unique clinical, genetic, or molecular features. Ewing's sarcoma serves as an excellent paradigm for understanding tumorigenesis because it exhibits some very useful and important characteristics. For example, nearly all cases of Ewing's sarcoma contain the (11;22)(q24;q12) chromosomal translocation that encodes the EWS/FLI oncoprotein. Besides the t(11;22), however, many cases have otherwise simple karyotypes with no other demonstrable abnormalities. Furthermore, it seems that an underlying genetic susceptibility to Ewing's sarcoma, if it exists, must be rare. These two features suggest that EWS/FLI is the primary mutation that drives the development of this tumor. Finally, Ewing's sarcoma is an aggressive tumor that requires aggressive treatment. Thus, improved understanding of the pathogenesis of this tumor will not only be of academic interest, but may also lead to new therapeutic approaches for individuals afflicted with this disease. The purpose of this review is to highlight recent advances in understanding the molecular pathogenesis of Ewing's sarcoma, while considering the questions surrounding this disease that still remain and how this knowledge may be applied to developing new treatments for patients with this highly aggressive disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M . (1991). MIC2 is a specific marker for Ewing's sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing's sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67: 1886–1893.

    CAS  Google Scholar 

  • Amiel A, Ohali A, Fejgin M, Sardos-Albertini F, Bouaron N, Cohen IJ et al. (2003). Molecular cytogenetic parameters in Ewing sarcoma. Cancer Genet Cytogenet 140: 107–112.

    CAS  Google Scholar 

  • Armengol G, Tarkkanen M, Virolainen M, Forus A, Valle J, Bohling T et al. (1997). Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br J Cancer 75: 1403–1409.

    CAS  Google Scholar 

  • Arndt CA, Crist WM . (1999). Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341: 342–352.

    CAS  Google Scholar 

  • Bachmaier R, Aryee DN, Jug G, Kauer M, Kreppel M, Lee KA et al. (2009). O-GlcNAcylation is involved in the transcriptional activity of EWS-FLI1 in Ewing's sarcoma. Oncogene 28: 1280–1284.

    CAS  Google Scholar 

  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M et al. (1994). DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14: 3230–3241.

    Article  CAS  Google Scholar 

  • Beauchamp E, Bulut G, Abaan O, Chen K, Merchant A, Matsui W et al. (2009). GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J Biol Chem 284: 9074–9082.

    CAS  Google Scholar 

  • Benini S, Manara MC, Baldini N, Cerisano V, Massimo S, Mercuri M et al. (2001). Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing's sarcoma cells. Clin Cancer Res 7: 1790–1797.

    CAS  Google Scholar 

  • Benjamin RS, Gore L, Dias C, Warren TL, Naing A, Dhillon N et al. (2007). Activity of R1507, a fully humanized monoclonal antibody IGF-1R antagonist, in patients with Ewing's sarcoma noted in a phase I study. Connective Tissue Oncology Society 14th Annual Meeting: Seattle WA.

  • Bertolotti A, Melot T, Acker J, Vigneron M, Delattre O, Tora L . (1998). EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol Cell Biol 18: 1489–1497.

    CAS  Google Scholar 

  • Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123–1136.

    CAS  Google Scholar 

  • Braunreiter CL, Hancock JD, Coffin CM, Boucher KM, Lessnick SL . (2006). Expression of EWS-ETS fusions in NIH3T3 cells reveals significant differences to Ewing's sarcoma. Cell Cycle 5: 2753–2759.

    CAS  Google Scholar 

  • Brisset S, Schleiermacher G, Peter M, Mairal A, Oberlin O, Delattre O et al. (2001). CGH analysis of secondary genetic changes in Ewing tumors: correlation with metastatic disease in a series of 43 cases. Cancer Genet Cytogenet 130: 57–61.

    CAS  Google Scholar 

  • Brownhill SC, Taylor C, Burchill SA . (2007). Chromosome 9p21 gene copy number and prognostic significance of p16 in ESFT. Br J Cancer 96: 1914–1923.

    CAS  Google Scholar 

  • Burdach S, Plehm S, Unland R, Dirksen U, Borkhardt A, Staege MS et al. (2009). Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2. Cell Cycle 8: 1991–1996.

    CAS  Google Scholar 

  • Castillero-Trejo Y, Eliazer S, Xiang L, Richardson JA, Ilaria Jr RL . (2005). Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors. Cancer Res 65: 8698–8705.

    CAS  Google Scholar 

  • Cavazzana AO, Magnani JL, Ross RA, Miser J, Triche TJ . (1988). Ewing's sarcoma is an undifferentiated neuroectodermal tumor. Prog Clin Biol Res 271: 487–498.

    CAS  Google Scholar 

  • Chansky HA, Barahmand-Pour F, Mei Q, Kahn-Farooqi W, Zielinska-Kwiatkowska A, Blackburn M et al. (2004). Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing's sarcoma cells in vitro. J Orthop Res 22: 910–917.

    CAS  Google Scholar 

  • Charytonowicz E, Cordon-Cardo C, Matushansky I, Ziman M . (2009). Alveolar rhabdomyosarcoma: is the cell of origin a mesenchymal stem cell? Cancer Lett 279: 126–136.

    CAS  Google Scholar 

  • Cironi L, Riggi N, Provero P, Wolf N, Suva ML, Suva D et al. (2008). IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells. PLoS One 3: e2634.

    Google Scholar 

  • Codrington R, Pannell R, Forster A, Drynan LF, Daser A, Lobato N et al. (2005). The Ews-ERG fusion protein can initiate neoplasia from lineage-committed haematopoietic cells. PLoS Biol 3: e242.

    Google Scholar 

  • Comstock KE, Widersten M, Hao XY, Henner WD, Mannervik B . (1994). A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes. Arch Biochem Biophys 311: 487–495.

    CAS  Google Scholar 

  • Dahlin DC, Coventry MB, Scanlon PW . (1961). Ewing's sarcoma. A critical analysis of 165 cases. J Bone Joint Surg Am 43-A: 185–192.

    CAS  Google Scholar 

  • de Alava E, Antonescu CR, Panizo A, Leung D, Meyers PA, Huvos AG et al. (2000). Prognostic impact of p53 status in Ewing sarcoma. Cancer 89: 783–792.

    CAS  Google Scholar 

  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M et al. (1992). Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359: 162–165.

    CAS  Google Scholar 

  • Deneen B, Denny CT . (2001). Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene 20: 6731–6741.

    CAS  Google Scholar 

  • Dickman PS, Liotta LA, Triche TJ . (1982). Ewing's sarcoma: characterization in established cultures and evidence of its histogenesis. Lab Invest 47: 375–382.

    CAS  Google Scholar 

  • Douglas D, Hsu JH, Hung L, Cooper A, Abdueva D, van Doorninck J et al. (2008). BMI-1 promotes Ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res 68: 6507–6515.

    CAS  Google Scholar 

  • Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L et al. (2009). A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med 15: 750–756.

    CAS  Google Scholar 

  • Ewing J . (1921). Diffuse endothelioma of bone. Proc NY Pathol Soc 21: 17–24.

    Google Scholar 

  • Fellinger EJ, Garin-Chesa P, Triche TJ, Huvos AG, Rettig WJ . (1991). Immunohistochemical analysis of Ewing's sarcoma cell surface antigen p30/32MIC2. Am J Pathol 139: 317–325.

    CAS  Google Scholar 

  • Ferreira BI, Alonso J, Carrillo J, Acquadro F, Largo C, Suela J et al. (2008). Array CGH and gene-expression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing's sarcoma. Oncogene 27: 2084–2090.

    CAS  Google Scholar 

  • Fuchs B, Inwards C, Scully SP, Janknecht R . (2004a). hTERT is highly expressed in Ewing's sarcoma and activated by EWS-ETS oncoproteins. Clin Orthop Relat Res 426: 64–68.

    Google Scholar 

  • Fuchs B, Inwards CY, Janknecht R . (2004b). Vascular endothelial growth factor expression is up-regulated by EWS-ETS oncoproteins and Sp1 and may represent an independent predictor of survival in Ewing's sarcoma. Clin Cancer Res 10: 1344–1353.

    CAS  Google Scholar 

  • Gangwal K, Close D, Enriquez CA, Hill CP, Lessnick SL . (2010). Emergent properties of EWS/FLI regulation via GGAA-microsatellites in Ewing's sarcoma. Genes Cancer 2: 177–187.

    Google Scholar 

  • Gangwal K, Lessnick SL . (2008). Microsatellites are EWS/FLI response elements: genomic ‘junk’ is EWS/FLI's treasure. Cell Cycle 7: 3127–3132.

    CAS  Google Scholar 

  • Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA et al. (2008). Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc Natl Acad Sci USA 105: 10149–10154.

    CAS  Google Scholar 

  • Guillon N, Tirode F, Boeva V, Zynovyev A, Barillot E, Delattre O . (2009). The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS ONE 4: e4932.

    Google Scholar 

  • Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG et al. (1999). Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet 23: 222–227.

    CAS  Google Scholar 

  • Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR . (2007). A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11: 375–388.

    CAS  Google Scholar 

  • Hamilton G, Mallinger R, Hofbauer S, Havel M . (1991). The monoclonal HBA-71 antibody modulates proliferation of thymocytes and Ewing's sarcoma cells by interfering with the action of insulin-like growth factor I. Thymus 18: 33–41.

    CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  Google Scholar 

  • Hancock JD, Lessnick SL . (2008). A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7: 250–256.

    CAS  Google Scholar 

  • Hattinger CM, Potschger U, Tarkkanen M, Squire J, Zielenska M, Kiuru-Kuhlefelt S et al. (2002). Prognostic impact of chromosomal aberrations in Ewing tumours. Br J Cancer 86: 1763–1769.

    CAS  Google Scholar 

  • Herrero-Martin D, Osuna D, Ordonez JL, Sevillano V, Martins AS, Mackintosh C et al. (2009). Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer 101: 80–90.

    CAS  Google Scholar 

  • Horowitz ME, Malawer MM, Woo SY, Hicks MJ . (1997). Ewing's sarcoma family of tumors: Ewing's sarcoma of bone and soft tissue and the peripheral primitive neuroectodermal tumors. In: Pizzo PA, Poplack DG (eds). Principles and Practice of Pediatric Oncology, 3rd edn. Lippincott-Raven Publishers: Philadelphia, pp 831–863.

    Google Scholar 

  • Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ . (2005). EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors. Cancer Res 65: 4633–4644.

    CAS  Google Scholar 

  • Huang HY, Illei PB, Zhao Z, Mazumdar M, Huvos AG, Healey JH et al. (2005). Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 23: 548–558.

    CAS  Google Scholar 

  • Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT et al. (1995). A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10: 1229–1234.

    CAS  Google Scholar 

  • Joo J, Christensen L, Warner K, States L, Kang HG, Vo K et al. (2009). GLI1 is a central mediator of EWS/FLI1 signaling in Ewing tumors. PLoS One 4: e7608.

    Google Scholar 

  • Kadin ME, Bensch KG . (1971). On the origin of Ewing's tumor. Cancer 27: 257–273.

    CAS  Google Scholar 

  • Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishihira H, Tanaka Y et al. (1996). Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 15: 115–121.

    CAS  Google Scholar 

  • Kang HG, Jenabi JM, Zhang J, Keshelava N, Shimada H, May WA et al. (2007). E-cadherin cell-cell adhesion in Ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res 67: 3094–3105.

    CAS  Google Scholar 

  • Kauer M, Ban J, Kofler R, Walker B, Davis S, Meltzer P et al. (2009). A molecular function map of Ewing's sarcoma. PLoS ONE 4: e5415.

    Google Scholar 

  • Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . (2004a). Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18: 2614–2626.

    CAS  Google Scholar 

  • Keller C, Hansen MS, Coffin CM, Capecchi MR . (2004b). Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18: 2608–2613.

    CAS  Google Scholar 

  • Kinsey M, Smith R, Iyer AK, McCabe ER, Lessnick SL . (2009). EWS/FLI and its downstream target NR0B1 interact directly to modulate transcription and oncogenesis in Ewing's sarcoma. Cancer Res 69: 9047–9055.

    CAS  Google Scholar 

  • Kinsey M, Smith R, Lessnick SL . (2006). NR0B1 Is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's Sarcoma. Mol Cancer Res 4: 851–859.

    CAS  Google Scholar 

  • Klevernic IV, Morton S, Davis RJ, Cohen P . (2009). Phosphorylation of Ewing's sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage. Biochem J 418: 625–634.

    CAS  Google Scholar 

  • Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock R, Carol H et al. (2008). Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 1190–1197.

    Google Scholar 

  • Kovar H . (1998). Ewing's sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol 10: 334–342.

    CAS  Google Scholar 

  • Kovar H . (2005). Context matters: the hen or egg problem in Ewing's sarcoma. Semin Cancer Biol 15: 189–196.

    CAS  Google Scholar 

  • Kovar H, Bernard A . (2006). CD99-positive ‘Ewing's sarcoma’ from mouse-bone marrow-derived mesenchymal progenitor cells? Cancer Res 66: 9786. author reply 9786.

    CAS  Google Scholar 

  • Kovar H, Dworzak M, Strehl S, Schnell E, Ambros IM, Ambros PF et al. (1990). Overexpression of the pseudoautosomal gene MIC2 in Ewing's sarcoma and peripheral primitive neuroectodermal tumor. Oncogene 5: 1067–1070.

    CAS  Google Scholar 

  • Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B et al. (1997). Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene 15: 2225–2232.

    CAS  Google Scholar 

  • Kurmasheva RT, Dudkin L, Billups C, Debelenko LV, Morton CL, Houghton PJ . (2009). The insulin-like growth factor-1 receptor-targeting antibody, CP-751 871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 69: 7662–7671.

    CAS  Google Scholar 

  • Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T et al. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25: 1468–1475.

    CAS  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.

    CAS  Google Scholar 

  • Lessnick SL, Braun BS, Denny CT, May WA . (1995). Multiple domains mediate transformation by the Ewing′s sarcoma EWS/FLI- 1 fusion gene. Oncogene 10: 423–431.

    CAS  Google Scholar 

  • Lessnick SL, Dacwag CS, Golub TR . (2002). The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell 1: 393–401.

    CAS  Google Scholar 

  • Lin PP, Pandey MK, Jin F, Xiong S, Deavers M, Parant JM et al. (2008). EWS-FLI1 induces developmental abnormalities and accelerates sarcoma formation in a transgenic mouse model. Cancer Res 68: 8968–8975.

    CAS  Google Scholar 

  • Linabery AM, Ross JA . (2008). Childhood and adolescent cancer survival in the US by race and ethnicity for the diagnostic period 1975–1999. Cancer 113: 2575–2596.

    Google Scholar 

  • Lipinski M, Braham K, Philip I, Wiels J, Philip T, Dellagi K et al. (1986). Phenotypic characterization of Ewing sarcoma cell lines with monoclonal antibodies. J Cell Biochem 31: 289–296.

    CAS  Google Scholar 

  • Lipinski M, Braham K, Philip I, Wiels J, Philip T, Goridis C et al. (1987a). Neuroectoderm-associated antigens on Ewing's sarcoma cell lines. Cancer Res 47: 183–187.

    CAS  Google Scholar 

  • Lipinski M, Hirsch MR, Deagostini-Bazin H, Yamada O, Tursz T, Goridis C . (1987b). Characterization of neural cell adhesion molecules (NCAM) expressed by Ewing and neuroblastoma cell lines. Int J Cancer 40: 81–86.

    CAS  Google Scholar 

  • Luo W, Gangwal K, Sankar S, Boucher KM, Thomas D, Lessnick SL . (2009). GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing′s sarcoma oncogenesis and therapeutic resistance. Oncogene 28: 4126–4132.

    CAS  Google Scholar 

  • Manara MC, Nicoletti G, Zambelli D, Ventura S, Guerzoni C, Landuzzi L et al. (2010). NVP-BEZ235 as a new therapeutic option for sarcomas. Clin Cancer Res 16: 530–540.

    CAS  Google Scholar 

  • Mao X, Miesfeldt S, Yang H, Leiden JM, Thompson CB . (1994). The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem 269: 18216–18222.

    CAS  Google Scholar 

  • Maurici D, Perez-Atayde A, Grier HE, Baldini N, Serra M, Fletcher JA . (1998). Frequency and implications of chromosome 8 and 12 gains in Ewing sarcoma. Cancer Genet Cytogenet 100: 106–110.

    CAS  Google Scholar 

  • May WA, Arvand A, Thompson AD, Braun BS, Wright M, Denny CT . (1997). EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nat Genet 17: 495–497.

    CAS  Google Scholar 

  • May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O et al. (1993a). Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci USA 90: 5752–5756.

    CAS  Google Scholar 

  • May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB et al. (1993b). The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 13: 7393–7398.

    CAS  Google Scholar 

  • Meyers PA, Levy AS . (2000). Ewing's sarcoma. Curr Treat Options Oncol 1: 247–257.

    CAS  Google Scholar 

  • Miyagawa Y, Okita H, Nakaijima H, Horiuchi Y, Sato B, Taguchi T et al. (2008). Inducible expression of chimeric EWS/ETS proteins confers Ewing's family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol 28: 2125–2137.

    CAS  Google Scholar 

  • Nakatani F, Tanaka K, Sakimura R, Matsumoto Y, Matsunobu T, Li X et al. (2003). Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem 278: 15105–15115.

    CAS  Google Scholar 

  • Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB et al. (2008). Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res 14: 4572–4583.

    CAS  Google Scholar 

  • Ng TL, O′Sullivan M J, Pallen CJ, Hayes M, Clarkson PW, Winstanley M et al. (2007). Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn 9: 459–463.

    Google Scholar 

  • Ohali A, Avigad S, Cohen IJ, Meller I, Kollender Y, Issakov J et al. (2003). Association between telomerase activity and outcome in patients with nonmetastatic Ewing family of tumors. J Clin Oncol 21: 3836–3843.

    CAS  Google Scholar 

  • Ohno T, Rao VN, Reddy ES . (1993). EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res 53: 5859–5863.

    CAS  Google Scholar 

  • Olmos D, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML et al. (2009). Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751 871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol 11: 129–135.

    Google Scholar 

  • Olsen RJ, Hinrichs SH . (2001). Phosphorylation of the EWS IQ domain regulates transcriptional activity of the EWS/ATF1 and EWS/FLI1 fusion proteins. Oncogene 20: 1756–1764.

    CAS  Google Scholar 

  • Owen LA, Kowalewski AA, Lessnick SL . (2008). EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma. PLoS One 3: e1965.

    Google Scholar 

  • Owen LA, Lessnick SL . (2006). Identification of target genes in their native cellular context: an analysis of EWS/FLI in Ewing's sarcoma. Cell Cycle 5: 2049–2053.

    CAS  Google Scholar 

  • Ozaki T, Paulussen M, Poremba C, Brinkschmidt C, Rerin J, Ahrens S et al. (2001). Genetic imbalances revealed by comparative genomic hybridization in Ewing tumors. Genes Chromosomes Cancer 32: 164–171.

    CAS  Google Scholar 

  • Peter M, Couturier J, Pacquement H, Michon J, Thomas G, Magdelenat H et al. (1997). A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 14: 1159–1164.

    CAS  Google Scholar 

  • Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA, Kovar H . (1998). Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene 17: 603–610.

    CAS  Google Scholar 

  • Prieur A, Tirode F, Cohen P, Delattre O . (2004). EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 24: 7275–7283.

    CAS  Google Scholar 

  • Riggi N, Cironi L, Provero P, Suva ML, Kaloulis K, Garcia-Echeverria C et al. (2005). Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65: 11459–11468.

    CAS  Google Scholar 

  • Riggi N, Suva ML, Stamenkovic I . (2009). Ewing's sarcoma origin: from duel to duality. Expert Rev Anticancer Ther 9: 1025–1030.

    Google Scholar 

  • Riggi N, Suva ML, Suva D, Cironi L, Provero P, Tercier S et al. (2008). EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 68: 2176–2185.

    CAS  Google Scholar 

  • Roberts P, Burchill SA, Brownhill S, Cullinane CJ, Johnston C, Griffiths MJ et al. (2008). Ploidy and karyotype complexity are powerful prognostic indicators in the Ewing's sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children's Cancer and Leukaemia Group. Genes Chromosomes Cancer 47: 207–220.

    CAS  Google Scholar 

  • Rocchi A, Manara MC, Sciandra M, Zambelli D, Nardi F, Nicoletti G et al. (2010). CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest 120: 668–680.

    CAS  Google Scholar 

  • Rorie CJ, Thomas VD, Chen P, Pierce HH, O'Bryan JP, Weissman BE . (2004). The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors. Cancer Res 64: 1266–1277.

    CAS  Google Scholar 

  • Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D et al. (2008). Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA 105: 6004–6009.

    CAS  Google Scholar 

  • Savola S, Klami A, Tripathi A, Niini T, Serra M, Picci P et al. (2009). Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer 9: 17.

    Google Scholar 

  • Schuck A, Poremba C, Lanvers C, Konemann S, Schleifer T, Wai D et al. (2002). Radiation-induced changes of telomerase activity in a human Ewing xenograft tumor. Strahlenther Onkol 178: 701–708.

    Google Scholar 

  • Scotlandi K, Avnet S, Benini S, Manara MC, Serra M, Cerisano V et al. (2002a). Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigenesis and enhances chemosensitivity in Ewing's sarcoma cells. Int J Cancer 101: 11–16.

    CAS  Google Scholar 

  • Scotlandi K, Baldini N, Cerisano V, Manara MC, Benini S, Serra M et al. (2000). CD99 engagement: an effective therapeutic strategy for Ewing tumors. Cancer Res 60: 5134–5142.

    CAS  Google Scholar 

  • Scotlandi K, Benini S, Nanni P, Lollini PL, Nicoletti G, Landuzzi L et al. (1998). Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing′s sarcoma in athymic mice. Cancer Res 58: 4127–4131.

    CAS  Google Scholar 

  • Scotlandi K, Benini S, Sarti M, Serra M, Lollini PL, Maurici D et al. (1996). Insulin-like growth factor I receptor-mediated circuit in Ewing's sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res 56: 4570–4574.

    CAS  Google Scholar 

  • Scotlandi K, Maini C, Manara MC, Benini S, Serra M, Cerisano V et al. (2002b). Effectiveness of insulin-like growth factor I receptor antisense strategy against Ewing's sarcoma cells. Cancer Gene Ther 9: 296–307.

    CAS  Google Scholar 

  • Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S et al. (2005). Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876.

    CAS  Google Scholar 

  • Scotlandi K, Remondini D, Castellani G, Manara MC, Nardi F, Cantiani L et al. (2009). Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol 27: 2209–2216.

    CAS  Google Scholar 

  • Selvarajah S, Yoshimoto M, Prasad M, Shago M, Squire JA, Zielenska M et al. (2007). Characterization of trisomy 8 in pediatric undifferentiated sarcomas using advanced molecular cytogenetic techniques. Cancer Genet Cytogenet 174: 35–41.

    CAS  Google Scholar 

  • Seth A, Watson DK . (2005). ETS transcription factors and their emerging roles in human cancer. Eur J Cancer 41: 2462–2478.

    CAS  Google Scholar 

  • Sharrocks AD . (2001). The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2: 827–837.

    CAS  Google Scholar 

  • Shing DC, McMullan DJ, Roberts P, Smith K, Chin SF, Nicholson J et al. (2003). FUS/ERG gene fusions in Ewing's tumors. Cancer Res 63: 4568–4576.

    CAS  Google Scholar 

  • Shing DC, Morley-Jacob CA, Roberts I, Nacheva E, Coleman N . (2002). Ewing's tumour: novel recurrent chromosomal abnormalities demonstrated by molecular cytogenetic analysis of seven cell lines and one primary culture. Cytogenet Genome Res 97: 20–27.

    CAS  Google Scholar 

  • Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al. (2006). Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell 9: 405–416.

    CAS  Google Scholar 

  • Sohn HW, Choi EY, Kim SH, Lee IS, Chung DH, Sung UA et al. (1998). Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells. Am J Pathol 153: 1937–1945.

    CAS  Google Scholar 

  • Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT . (1994). A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 6: 146–151.

    CAS  Google Scholar 

  • Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G et al. (2004). DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 64: 8213–8221.

    CAS  Google Scholar 

  • Stegmaier K, Wong JS, Ross KN, Chow KT, Peck D, Wright RD et al. (2007). Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med 4: e122.

    Google Scholar 

  • Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM et al. (2009). Identification of cancer stem cells in Ewing's sarcoma. Cancer Res 69: 1776–1781.

    CAS  Google Scholar 

  • Szymczyna BR, Arrowsmith CH . (2000). DNA binding specificity studies of four ETS proteins support an indirect read-out mechanism of protein-DNA recognition. J Biol Chem 275: 28363–28370.

    CAS  Google Scholar 

  • Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129: 1377–1388.

    CAS  Google Scholar 

  • Tan AY, Manley JL . (2009). The TET family of proteins: functions and roles in disease. J Mol Cell Biol 1: 82–92.

    CAS  Google Scholar 

  • Tarkkanen M, Kiuru-Kuhlefelt S, Blomqvist C, Armengol G, Bohling T, Ekfors T et al. (1999). Clinical correlations of genetic changes by comparative genomic hybridization in Ewing sarcoma and related tumors. Cancer Genet Cytogenet 114: 35–41.

    CAS  Google Scholar 

  • Teitell MA, Thompson AD, Sorensen PH, Shimada H, Triche TJ, Denny CT . (1999). EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts. Lab Invest 79: 1535–1543.

    CAS  Google Scholar 

  • Terrier P, Llombart-Bosch A, Contesso G . (1996). Small round blue cell tumors in bone: prognostic factors correlated to Ewing′s sarcoma and neuroectodermal tumors. Semin Diagn Pathol 13: 250–257.

    CAS  Google Scholar 

  • Thompson AD, Teitell MA, Arvand A, Denny CT . (1999). Divergent Ewing's sarcoma EWS/ETS fusions confer a common tumorigenic phenotype on NIH3T3 cells. Oncogene 18: 5506–5513.

    CAS  Google Scholar 

  • Tirado OM, Mateo-Lozano S, Villar J, Dettin LE, Llort A, Gallego S et al. (2006). Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing's sarcoma cells. Cancer Res 66: 9937–9947.

    CAS  Google Scholar 

  • Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O . (2007). Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11: 421–429.

    CAS  Google Scholar 

  • Tolcher AW, Rothenberg ML, Rodon J, Delbeke D, Patnaik A, Nguyen L et al. (2007). A phase I pharmacokinetic and pharmacodynamic study of AMG 479, a fully human monoclonal antibody against insulin-like growth factor type 1 receptor (IGF-1R), in advanced solid tumors. J Clin Oncol, 2007 ASCO Annual Meeting, Chicago, IL. Proceedings Part I. 25, No. 18S (June 20 Supplement): 3002.

  • Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, van Steensel B et al. (2006). Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38: 694–699.

    CAS  Google Scholar 

  • Torchia EC, Boyd K, Rehg JE, Qu C, Baker SJ . (2007). EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol Cell Biol 27: 7918–7934.

    CAS  Google Scholar 

  • Torchia EC, Jaishankar S, Baker SJ . (2003). Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res 63: 3464–3468.

    CAS  Google Scholar 

  • Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP et al. (2006). Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res 66: 5574–5581.

    CAS  Google Scholar 

  • Toretsky JA, Kalebic T, Blakesley V, LeRoith D, Helman LJ . (1997). The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts. J Biol Chem 272: 30822–30827.

    CAS  Google Scholar 

  • Triche TJ, Askin FB, Kissane JM . (1987). Neuroblastoma, Ewing's sarcoma, and the differential diagnosis of small-, round-, blue-cell tumors. In: Feingold M, Benningtion JC (eds). Major Problems in Pathology. Saunders: Philadelphia, pp 145–195.

    Google Scholar 

  • Turc-Carel C, Aurias A, Mugneret F, Lizard S, Sidaner I, Volk C et al. (1988). Chromosomes in Ewing's sarcoma.I An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet 32: 229–238.

    CAS  Google Scholar 

  • Turc-Carel C, Philip I, Berger MP, Philip T, Lenoir GM . (1984). Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). Cancer Genet Cytogenet 12: 1–19.

    CAS  Google Scholar 

  • van Valen F, Winkelmann W, Jurgens H . (1992). Type I and type II insulin-like growth factor receptors and their function in human Ewing's sarcoma cells. J Cancer Res Clin Oncol 118: 269–275.

    CAS  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    CAS  Google Scholar 

  • Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI et al. (2008). Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 22: 1662–1676.

    CAS  Google Scholar 

  • Wang CC, Schulz MD . (1953). Ewing's sarcoma; a study of fifty cases treated at the Massachusetts General Hospital, 1930–1952 inclusive. N Engl J Med 248: 571–576.

    CAS  Google Scholar 

  • Wang X, Arai S, Song X, Reichart DD, Du K, Pascual G et al. (2008). Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454: 126–130.

    CAS  Google Scholar 

  • Wei G, Antonescu CR, de Alava E, Leung D, Huvos AG, Meyers PA et al. (2000). Prognostic impact of INK4A deletion in Ewing sarcoma. Cancer 89: 793–799.

    CAS  Google Scholar 

  • Whang-Peng J, Triche TJ, Knutsen T, Miser JS, Kao-Shan S, Tsai S et al. (1984). Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 311: 584–585.

    CAS  Google Scholar 

  • Yee D, Favoni RE, Lebovic GS, Lombana F, Powell DR, Reynolds CP et al. (1990). Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest 86: 1806–1814.

    CAS  Google Scholar 

  • Zhang J, Hu S, Schofield DE, Sorensen PH, Triche TJ . (2004). Selective usage of D-Type cyclins by Ewing's tumors and rhabdomyosarcomas. Cancer Res 64: 6026–6034.

    CAS  Google Scholar 

  • Zwerner JP, Joo J, Warner KL, Christensen L, Hu-Lieskovan S, Triche TJ et al. (2008). The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 27: 3282–3291.

    CAS  Google Scholar 

Download references

Acknowledgements

We apologize for the omission of many important topics and references due to space constraints. JDS acknowledges support from St Baldrick's Foundation and The Harriet H Samuelsson Foundation. SLL acknowledges support from the National Cancer Institute (R01CA140394 and R21CA138295), the American Cancer Society (RSG0618801MGO), Alex's Lemonade Stand Foundation, the Liddy Shriver Sarcoma Initiative, the Terri Anna Perine Sarcoma Fund, and the Huntsman Cancer Institute and Huntsman Cancer Foundation. We also acknowledge NIH support to the Huntsman Cancer Institute (P30CA042014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Lessnick.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toomey, E., Schiffman, J. & Lessnick, S. Recent advances in the molecular pathogenesis of Ewing's sarcoma. Oncogene 29, 4504–4516 (2010). https://doi.org/10.1038/onc.2010.205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.205

Keywords

This article is cited by

Search

Quick links