Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence

Abstract

15-Lipoxygenase 2 (15-LOX2), a lipid-peroxidizing enzyme, is mainly expressed in the luminal compartment of the normal human prostate, and is often decreased or lost in prostate cancer. Previous studies from our lab implicate 15-LOX2 as a functional tumor suppressor. To better understand the biological role of 15-LOX2 in vivo, we generated prostate-specific 15-LOX2 transgenic mice using the ARR2PB promoter. Unexpectedly, transgenic expression of 15-LOX2 or 15-LOX2sv-b, a splice variant that lacks arachidonic acid-metabolizing activity, resulted in age-dependent prostatic hyperplasia and enlargement of the prostate. Prostatic hyperplasia induced by both 15-LOX2 and 15-LOX2sv-b was associated with an increase in luminal and Ki-67+ cells; however, 15-LOX2-transgenic prostates also showed a prominent increase in basal cells. Microarray analysis revealed distinct gene expression profiles that could help explain the prostate phenotypes. Strikingly, 15-LOX2, but not 15-LOX2sv-b, transgenic prostate showed upregulation of several well-known stem or progenitor cell molecules including Sca-1, Trop2, p63, Nkx3.1 and Psca. Prostatic hyperplasia caused by both 15-LOX2 and 15-LOX2sv-b did not progress to prostatic intraprostate neoplasia or carcinoma and, mechanistically, prostate lobes (especially those of 15-LOX2 mice) showed a dramatic increase in senescent cells as revealed by increased SA-βgal, p27Kip1 and heterochromatin protein 1γ staining. Collectively, our results suggest that 15-LOX2 expression in mouse prostate leads to hyperplasia and also induces cell senescence, which may, in turn, function as a barrier to tumor development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Abbreviations

15-LOX2:

15-lipoxygenase 2

15(S)-HETE:

15(S)-hydroxyeicosatetraenoic acid

AA:

arachidonic acid

AP:

anterior prostate

CK5:

cytokeratin 5

DP:

dorsal prostate

ECM:

extracellular matrix

HP1-γ:

heterochromatin protein-1 γ

LP:

lateral prostate

NHP:

normal human prostate epithelial cells

PCa:

prostate cancer

PPARs:

peroxisome proliferator-activated receptors

SA-βgal:

senescence associated β-galactosidase

VP:

ventral prostate

wt:

wild type

References

  • Abate-Shen C, Shen MM . (2000). Molecular genetics of prostate cancer. Genes Dev 14: 2410–2434.

    Article  CAS  PubMed  Google Scholar 

  • Allred DC, Harvey JM, Berardo M, Clark GM . (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11: 155–168.

    CAS  PubMed  Google Scholar 

  • Bhatia B, Jiang M, Suraneni M, Patrawala L, Badeaux M, Schneider-Broussard R et al. (2008). Critical and distinct roles of p16 and telomerase in regulating the proliferative life span of normal human prostate epithelial progenitor cells. J Biol Chem 283: 27957–27972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia B, Maldonado CJ, Tang S, Chandra D, Klein RD, Chopra D et al. (2003). Subcellular localization and tumor-suppressive functions of 15-lipoxygenase 2 (15-LOX2) and its splice variants. J Biol Chem 278: 25091–25100.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia B, Tang S, Yang P, Doll A, Aumueller G, Newman RA et al. (2005). Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene 24: 3583–3595.

    Article  CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Brash AR, Boeglin WE, Chang MS . (1997). Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA 94: 6148–6152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chano T, Ikegawa S, Kontani K, Okabe H, Baldini N, Saeki Y . (2002). Identification of RB1CC1, a novel human gene that can induce RB1 in various human cells. Oncogene 21: 1295–1298.

    Article  CAS  PubMed  Google Scholar 

  • Chen GG, Xu H, Lee JF, Subramaniam M, Leung KL, Wang SH et al. (2003). 15-hydroxy-eicosatetraenoic acid arrests growth of colorectal cancer cells via a peroxisome proliferator-activated receptor gamma-dependent pathway. Int J Cancer 107: 837–843.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Schneider-Broussard R, Hollowell D, McArthur M, Jeter C, Benavides F et al. (2009). Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice. Differentiation 77: 324–334.

    Article  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillner K, Kindblom J, Flores-Morales A, Shao R, Tornell J, Norstedt G et al. (2003). Gene expression analysis of prostate hyperplasia in mice overexpressing the prolactin gene specifically in the prostate. Endocrinology 144: 4955–4966.

    Article  CAS  PubMed  Google Scholar 

  • Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Harris SC, Su Z, Chen M, Qian F, Shi L et al. (2009). ArrayTrack: an FDA and public genomic tool. Methods Mol Biol 563: 379–398.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON . (2008). Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 105: 20882–20887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez AL, Roberts RL, Massion PP, Olson SJ, Shyr Y, Shappell SB . (2004). 15-Lipoxygenase-2 expression in benign and neoplastic lung: an immunohistochemical study and correlation with tumor grade and proliferation. Hum Pathol 35: 840–849.

    Article  CAS  PubMed  Google Scholar 

  • Ibaragi S, Yoshioka N, Kishikawa H, Hu JK, Sadow PM, Li M et al. (2009). Angiogenin-stimulated rRNA transcription is essential for initiation and survival of AKT-induced prostate intraepithelial neoplasia. Mol Cancer Res 7: 415–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikebuchi K, Chano T, Ochi Y, Tameno H, Shimada T, Hisa Y et al. (2009). RB1CC1 activates the promoter and expression of RB1 in human cancer. Int J Cancer 125: 861–867.

    Article  CAS  PubMed  Google Scholar 

  • Jack GS, Brash AR, Olson SJ, Manning S, Coffey CS, Smith Jr JA et al. (2000). Reduced 15-lipoxygenase-2 immunostaining in prostate adenocarcinoma: correlation with grade and expression in high-grade prostatic intraepithelial neoplasia. Hum Pathol 31: 1146–1154.

    Article  CAS  PubMed  Google Scholar 

  • Jiang WG, Watkins G, Douglas-Jones A, Mansel RE . (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 74: 235–245.

    Article  CAS  PubMed  Google Scholar 

  • Jisaka M, Kim RB, Boeglin WE, Brash AR . (2000). Identification of amino acid determinants of the positional specificity of mouse 8S-lipoxygenase and human 15S-lipoxygenase-2. J Biol Chem 275: 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  • Jisaka M, Kim RB, Boeglin WE, Nanney LB, Brash AR . (1997). Molecular cloning and functional expression of a phorbol ester-inducible 8S-lipoxygenase from mouse skin. J Biol Chem 272: 24410–24416.

    Article  CAS  PubMed  Google Scholar 

  • Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS et al. (1998). Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 78: i–xv.

    CAS  PubMed  Google Scholar 

  • Katona TM, Neubauer BL, Iversen PW, Zhang S, Baldridge LA, Cheng L . (2005). Elevated expression of angiogenin in prostate cancer and its precursors. Clin Cancer Res 11: 8358–8363.

    Article  CAS  PubMed  Google Scholar 

  • Kelavkar UP, Parwani AV, Shappell SB, Martin WD . (2006). Conditional expression of human 15-lipoxygenase-1 in mouse prostate induces prostatic intraepithelial neoplasia: the FLiMP mouse model. Neoplasia 8: 510–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilty I, Logan A, Vickers PJ . (1999). Differential characteristics of human 15-lipoxygenase isozymes and a novel splice variant of 15S-lipoxygenase. Eur J Biochem 266: 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Rundhaug JE, Benavides F, Yang P, Newman RA, Fischer SM . (2005). An antitumorigenic role for murine 8S-lipoxygenase in skin carcinogenesis. Oncogene 24: 1174–1187.

    Article  CAS  PubMed  Google Scholar 

  • Kindblom J, Dillner K, Sahlin L, Robertson F, Ormandy C, Tornell J et al. (2003). Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. Endocrinology 144: 2269–2278.

    Article  CAS  PubMed  Google Scholar 

  • Lawson DA, Witte ON . (2007). Stem cells in prostate cancer initiation and progression. J Clin Invest 117: 2044–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahipal SV, Subhashini J, Reddy MC, Reddy MM, Anilkumar K, Roy KR et al. (2007). Effect of 15-lipoxygenase metabolites, 15-(S)-HPETE and 15-(S)-HETE on chronic myelogenous leukemia cell line K-562: reactive oxygen species (ROS) mediate caspase-dependent apoptosis. Biochem Pharmacol 74: 202–214.

    Article  CAS  PubMed  Google Scholar 

  • Majumder PK, Grisanzio C, O′Connell F, Barry M, Brito JM, Xu Q et al. (2008). A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14: 146–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q et al. (2003). Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci USA 100: 7841–7846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masumori N, Thomas TZ, Chaurand P, Case T, Paul M, Kasper S et al. (2001). A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 61: 2239–2249.

    CAS  PubMed  Google Scholar 

  • Melkoumian ZK, Peng X, Gan B, Wu X, Guan JL . (2005). Mechanism of cell cycle regulation by FIP200 in human breast cancer cells. Cancer Res 65: 6676–6684.

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S . (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949–953.

    Article  CAS  PubMed  Google Scholar 

  • Schweiger D, Furstenberger G, Krieg P . (2007). Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways. J Lipid Res 48: 553–564.

    Article  CAS  PubMed  Google Scholar 

  • Shappell SB, Boeglin WE, Olson SJ, Kasper S, Brash AR . (1999). 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am J Pathol 155: 235–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shappell SB, Keeney DS, Zhang J, Page R, Olson SJ, Brash AR . (2001). 15-Lipoxygenase-2 expression in benign and neoplastic sebaceous glands and other cutaneous adnexa. J Invest Dermatol 117: 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Shappell SB, Olson SJ, Hannah SE, Manning S, Roberts RL, Masumori N. . (2003). Elevated expression of 12/15-lipoxygenase and cyclooxygenase-2 in a transgenic mouse model of prostate carcinoma. Cancer Res 63: 2256–2267.

    CAS  PubMed  Google Scholar 

  • Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA et al. (2004). Prostate pathology of genetically engineered mice: definitions and classification. the consensus report from the bar harbor meeting of the mouse models of human cancer consortium prostate pathology committee. Cancer Res 64: 2270–2305.

    Article  CAS  PubMed  Google Scholar 

  • Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L et al. (2000). p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157: 1769–1775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spindler SA, Sarkar FH, Sakr WA, Blackburn ML, Bull AW, LaGattuta M et al. (1997). Production of 13-hydroxyoctadecadienoic acid (13-HODE) by prostate tumors and cell lines. Biochem Biophys Res Commun 239: 775–781.

    Article  CAS  PubMed  Google Scholar 

  • Subbarayan V, Krieg P, Hsi LC, Kim J, Yang P, Sabichi AL et al. (2006). 15-Lipoxygenase-2 gene regulation by its product 15-(S)-hydroxyeicosatetraenoic acid through a negative feedback mechanism that involves peroxisome proliferator-activated receptor gamma. Oncogene 25: 6015–6025.

    Article  CAS  PubMed  Google Scholar 

  • Sugimura Y, Cunha GR, Donjacour AA . (1986). Morphogenesis of ductal networks in the mouse prostate. Biol Reprod 34: 961–971.

    Article  CAS  PubMed  Google Scholar 

  • Tang DG, Bhatia B, Tang S, Schneider-Broussard R . (2007a). 15-lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins Other Lipid Mediat 82: 135–146.

    Article  CAS  PubMed  Google Scholar 

  • Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R et al. (2007b). Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Bhatia B, Maldonado CJ, Yang P, Newman RA, Liu J et al. (2002). Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells. J Biol Chem 277: 16189–16201.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wang MT, Chen Y, Yang D, Che M, Honn KV et al. (2009). Downregulation of vascular endothelial growth factor and induction of tumor dormancy by 15-lipoxygenase-2 in prostate cancer. Int J Cancer 124: 1545–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran CP, Lin C, Yamashiro J, Reiter RE . (2002). Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells. Mol Cancer Res 1: 113–121.

    CAS  PubMed  Google Scholar 

  • Wang D, Chen S, Feng Y, Yang Q, Campbell BH, Tang X et al. (2006). Reduced expression of 15-lipoxygenase 2 in human head and neck carcinomas. Tumour Biol 27: 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461: 495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XC, Shappell SB, Liang Z, Song S, Menter D, Subbarayan V et al. (2003). Reduced 15S-lipoxygenase-2 expression in esophageal cancer specimens and cells and upregulation in vitro by the cyclooxygenase-2 inhibitor, NS398. Neoplasia 5: 121–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka N, Wang L, Kishimoto K, Tsuji T, Hu GF . (2006). A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc Natl Acad Sci USA 103: 14519–14524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Thomas TZ, Kasper S, Matusik RJ . (2000). A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology 141: 4698–4710.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr R Matusik (Vanderbilt University) for providing the ARR2PB promoter, D Holowell for transgenic studies, Dr H Thames and K Lin for assistance in statistics, the Histology Core for help in IHC, Animal Facility Core for animal-related experiments, Molecular Biology Core, especially J Repass, for assistance in qPCR analysis, C Perez for assistance in LCM, S Gaddis, L Shen and S Tsavachidis for assistance in microarray analysis, Drs S Fischer and C Jeter for critically reading the paper and other members of the Tang lab for support and helpful discussions. This work was supported in part by grants from NIH (R01-AG023374, R01-ES015888 and R21-ES015893-01A1), American Cancer Society (RSG MGO-105961), Department of Defense (W81XWH-07-1-0616 and W81XWH-08-1-0472) and Elsa Pardee Foundation (DGT) and by two Center Grants (CCSG-5 P30 CA016672 and ES07784).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Tang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suraneni, M., Schneider-Broussard, R., Moore, J. et al. Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene 29, 4261–4275 (2010). https://doi.org/10.1038/onc.2010.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.197

Keywords

This article is cited by

Search

Quick links