Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Human FOXP3 and cancer

Abstract

FOXP3 is a transcription factor necessary and sufficient for induction of the immunosuppressive functions in regulatory T lymphocytes. Its expression was first considered as specific of this cell type, but FOXP3 can also be transiently expressed in T-cell antigen receptor-activated human nonregulatory T cells. Recent data indicate that FOXP3 is also expressed by some nonlymphoid cells, in which it can repress various oncogenes that are restored following FOXP3 deletion or mutation. This review summarizes major advances in (1) the understanding of Foxp3 functions in human regulatory T cells, (2) the prognostic significance of Foxp3-expressing T cells in human malignancies and (3) the significance of Foxp3 expression in human tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Akbar AN, Vukmanovic-Stejic M, Taams LS, Macallan DC . (2007). The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7: 231–237.

    CAS  PubMed  Google Scholar 

  • Allan SE, Passerini L, Bacchetta R, Crellin N, Dai M, Orban PC et al. (2005). The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest 115: 3276–3284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J et al. (2005). Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11: 1467–1473.

    PubMed  Google Scholar 

  • Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H et al. (2006). Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12: 465–472.

    CAS  PubMed  Google Scholar 

  • Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL et al. (2006). Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24: 5373–5380.

    PubMed  Google Scholar 

  • Bettelli E, Dastrange M, Oukka M . (2005). Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 102: 5138–5143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. (2001). Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68–73.

    CAS  PubMed  Google Scholar 

  • Burstein HJ . (2005). The distinctive nature of HER2-positive breast cancers. N Engl J Med 353: 1652–1654.

    CAS  PubMed  Google Scholar 

  • Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G et al. (2006). High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108: 2957–2964.

    CAS  PubMed  Google Scholar 

  • Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD . (2006). Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem 281: 36828–36834.

    CAS  PubMed  Google Scholar 

  • Chen GY, Chen C, Wang L, Chang X, Zheng P, Liu Y . (2008). Cutting edge: Broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol 180: 5163–5166.

    CAS  PubMed  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. (2003). Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coffer PJ, Burgering BM . (2004). Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 4: 889–899.

    CAS  PubMed  Google Scholar 

  • Curiel TJ . (2008). Regulatory T cells and treatment of cancer. Curr Opin Immunol 20: 241–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949.

    CAS  PubMed  Google Scholar 

  • Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al. (2005). Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115: 3623–3633.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Huang C, Zhou B, Ziegler SF . (2008). Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 180: 4785–4792.

    CAS  PubMed  Google Scholar 

  • Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD . (2009). Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 182: 2795–2807.

    CAS  PubMed  Google Scholar 

  • Ebert LM, Tan BS, Browning J, Svobodova S, Russell SE, Kirkpatrick N et al. (2008). The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68: 3001–3009.

    CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY . (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336.

    CAS  PubMed  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . (2005). Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341.

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Qiu S, Fan J, Zhou J, Wang X, Xiao Y et al. (2007). Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25: 2586–2593.

    PubMed  Google Scholar 

  • Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A et al. (2006). Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103: 6659–6664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al. (2004). CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34: 336–344.

    CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56: 641–648.

    CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al. (2005). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202: 919–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69: 2000–2009.

    CAS  PubMed  Google Scholar 

  • Haynes NM, van der Most RG, Lake RA, Smyth MJ . (2008). Immunogenic anti-cancer chemotherapy as an emerging concept. Curr Opin Immunol 20: 545–557.

    CAS  PubMed  Google Scholar 

  • Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grussel S, Sipos B et al. (2007). Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 67: 8344–8350.

    CAS  PubMed  Google Scholar 

  • Hiraoka N, Onozato K, Kosuge T, Hirohashi S . (2006). Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12: 5423–5434.

    CAS  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S . (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.

    CAS  PubMed  Google Scholar 

  • Jordanova E, Gorter A, Ayachi O, Prins F, Durrant L, Kenter G et al. (2008). Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res 14: 2028–2035.

    CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Rudensky A . (2009). Control of regulatory T cell lineage commitment and maintenance. Immunity 30: 616–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung DJ, Jin DH, Hong SW, Kim JE, Shin JS, Kim D et al. (2010). Foxp3 expression in p53-dependent DNA damage responses. J Biol Chem 285: 7995–8002.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koh KP, Sundrud MS, Rao A . (2009). Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3. PLoS One 4: e8109.

    PubMed  PubMed Central  Google Scholar 

  • Ladoire S, Arnould L, Mignot G, Coudert B, Rébé C, Chalmin F, Vincent J et al. (2010). Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat (in press).

  • Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B et al. (2008). Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 14: 2413–2420.

    CAS  PubMed  Google Scholar 

  • Lal G, Bromberg JS . (2009). Epigenetic mechanisms of regulation of Foxp3 expression. Blood 114: 3727–3735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R et al. (2007). FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104: 4571–4576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ et al. (2007). Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56: 1597–1604.

    CAS  PubMed  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169: 2756–2761.

    CAS  PubMed  Google Scholar 

  • Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD et al. (2006). Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 177: 3133–3142.

    CAS  PubMed  Google Scholar 

  • Lord R, Nair S, Schache A, Spicer J, Somaihah N, Khoo V et al. (2007). Low dose metronomic oral cyclophosphamide for hormone resistant prostate cancer: a phase II study. J Urol 177: 2136–2140, discussion 2140.

    CAS  PubMed  Google Scholar 

  • Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H . (2005). Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105: 2862–2868.

    CAS  PubMed  Google Scholar 

  • Mahnke K, Schonfeld K, Fondel S, Ring S, Karakhanova S, Wiedemeyer K et al. (2007). Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120: 2723–2733.

    CAS  PubMed  Google Scholar 

  • Manoukian G, Hagemeister F . (2009). Denileukin diftitox: a novel immunotoxin. Expert Opin Biol Ther 9: 1445–1451.

    CAS  PubMed  Google Scholar 

  • Medema RH, Burgering BM . (2007). The X factor: skewing X inactivation towards cancer. Cell 129: 1253–1254.

    CAS  PubMed  Google Scholar 

  • Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Menard S et al. (2009). FOXP3 expression and overall survival in breast cancer. J Clin Oncol 27: 1746–1752.

    CAS  PubMed  Google Scholar 

  • Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L et al. (2006). CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177: 7398–7405.

    CAS  PubMed  Google Scholar 

  • Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30: 899–911.

    CAS  PubMed  Google Scholar 

  • Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H et al. (2008). Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer 98: 148–153.

    CAS  PubMed  Google Scholar 

  • Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK et al. (2008). Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112: 610–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T et al. (2007). Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685–689.

    CAS  PubMed  Google Scholar 

  • Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF et al. (2009). Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325: 1142–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powell Jr DJ, Felipe-Silva A, Merino MJ, Ahmadzadeh M, Allen T et al. (2007). Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179: 4919–4928.

    CAS  PubMed  Google Scholar 

  • Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H et al. (2008). Transient T cell depletion causes regression of melanoma metastases. J Transl Med 6: 12.

    PubMed  PubMed Central  Google Scholar 

  • Roncador G, Brown PJ, Maestre L, Hue S, Martinez-Torrecuadrada JL, Ling KL et al. (2005). Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 35: 1681–1691.

    CAS  PubMed  Google Scholar 

  • Roux S, Apetoh L, Chalmin F, Ladoire S, Mignot G, Puig PE et al. (2008). CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer. J Clin Invest 118: 3751–3761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudensky AY, Gavin M, Zheng Y . (2006). FOXP3 and NFAT: partners in tolerance. Cell 126: 253–256.

    CAS  PubMed  Google Scholar 

  • Sakaguchi S . (2000). Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101: 455–458.

    CAS  PubMed  Google Scholar 

  • Sakaguchi S . (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352.

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M . (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164.

    CAS  PubMed  Google Scholar 

  • Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D et al. (2009). Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27: 186–192.

    PubMed  Google Scholar 

  • Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF . (2001). Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 276: 37672–37679.

    CAS  PubMed  Google Scholar 

  • Shevach EM . (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30: 636–645.

    CAS  PubMed  Google Scholar 

  • Siddiqui SA, Frigola X, Bonne-Annee S, Mercader M, Kuntz SM, Krambeck AE et al. (2007). Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res 13: 2075–2081.

    CAS  PubMed  Google Scholar 

  • Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M et al. (2002). Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110: 633–641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spatz A, Borg C, Feunteun J . (2004). X-chromosome genetics and human cancer. Nat Rev Cancer 4: 617–629.

    CAS  PubMed  Google Scholar 

  • Tai X, Cowan M, Feigenbaum L, Singer A . (2005). CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6: 152–162.

    CAS  PubMed  Google Scholar 

  • Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C et al. (2006). Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176: 2722–2729.

    CAS  PubMed  Google Scholar 

  • Tang Q, Bluestone JA . (2008). The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9: 239–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson TC, Southgate J, Kitchener G, Land H . (1989). Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56: 917–930.

    CAS  PubMed  Google Scholar 

  • Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T et al. (2009). Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323: 1488–1492.

    CAS  PubMed  Google Scholar 

  • van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O et al. (2010). Foxp3 protein stabilization. Blood 115: 965–974.

    CAS  PubMed  Google Scholar 

  • Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE et al. (2006). Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116: 2423–2433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH . (2005). De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc Natl Acad Sci USA 102: 4103–4108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan YY, Flavell RA . (2007). Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445: 766–770.

    CAS  PubMed  Google Scholar 

  • Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE . (2007). Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37: 129–138.

    CAS  PubMed  Google Scholar 

  • Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY et al. (2009). Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 16: 336–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Jurgens G, Kuttner F, Seifert E, Jackle H . (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57: 645–658.

    CAS  PubMed  Google Scholar 

  • Wieczorek G, Asemissen A, Model F, Turbachova I, Floess S, Liebenberg V et al. (2009). Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res 69: 599–608.

    CAS  PubMed  Google Scholar 

  • Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61: 4766–4772.

    CAS  PubMed  Google Scholar 

  • Woo YL, Sterling J, Crawford R, van der Burg SH, Coleman N, Stanley M . (2008). FOXP3 immunohistochemistry on formalin-fixed paraffin-embedded tissue: poor correlation between different antibodies. J Clin Pathol 61: 969–971.

    CAS  PubMed  Google Scholar 

  • Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al. (2006). FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126: 375–387.

    CAS  PubMed  Google Scholar 

  • Xu L, Kitani A, Fuss I, Strober W . (2007). Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178: 6725–6729.

    CAS  PubMed  Google Scholar 

  • Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP et al. (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29: 44–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka T, Miyamoto M, Cho Y, Ishikawa K, Kadoya M, Li L et al. (2008). Infiltrating regulatory T cell numbers is not a factor to predict patient's survival in oesophageal squamous cell carcinoma. Br J Cancer 98: 1258–1263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY . (2007). Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936–940.

    CAS  PubMed  Google Scholar 

  • Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M et al. (2009). Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10: 1000–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler SF . (2006). FOXP3: of mice and men. Annu Rev Immunol 24: 209–226.

    CAS  PubMed  Google Scholar 

  • Zitvogel L, Kroemer G . (2008). The dilemma of anticancer therapy: tumor-specific versus immune effects. Blood 112: 4364–4365.

    CAS  PubMed  Google Scholar 

  • Zou W . (2006). Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6: 295–307.

    CAS  PubMed  Google Scholar 

  • Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L et al. (2007a). FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 117: 3765–3773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W et al. (2007b). FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129: 1275–1286.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Ghiringhelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, F., Ladoire, S., Mignot, G. et al. Human FOXP3 and cancer. Oncogene 29, 4121–4129 (2010). https://doi.org/10.1038/onc.2010.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.174

Keywords

This article is cited by

Search

Quick links