Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic mutations regulate tumor microenvironment through induction of growth factors and angiogenic mediators

Abstract

Activating mutations in the tyrosine kinase domain of HER2 (ErbB2) have been identified in human cancers. Compared with wild-type HER2, mutant HER2 shows constitutively activate kinase activity and increased oncogenicity. Cells transformed by mutant HER2 are resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and exhibit an attenuated response to the HER2 antibody trastuzumab. We investigated herein pathways through which mutant HER2 alters the extracellular environment, potentially leading to drug resistance and the effect of simultaneously targeting HER2 and the tumor cell microenvironment with a therapeutic intent. Expression of mutant HER2 in mammary epithelial cells activated autocrine transforming growth factor (TGF) β1 signaling through a mechanism involving Rac1 and c-Jun N-terminal kinase-activating protein 1-dependent transcription. Cells transformed by an activating mutant of H-Ras (G12V) also expressed higher TGF-β1 level through Rac1 activation. In addition, mutant HER2 induced the EGFR ligands TGF-α and amphiregulin at the mRNA and protein levels. Vascular endothelial growth factor, a target of the TGF-β-Smad transcriptional regulation, was also induced as a result of expression of mutant HER2. Inhibition of TGF-β signaling with the Alk5 small molecule inhibitor LY2109761 reduced growth and invasiveness of cells expressing mutant HER2. Combined inhibition of intracellular and paracrine effects of mutant HER2 by trastuzumab and the EGFR antibody cetuximab were more efficient than single-agent therapies. These data suggest that mutations in oncogenes such as HER2 and Ras not only alter intracellular signaling but also influence on other components of the tumor microenvironment by inducing several pro-invasive growth factors. In turn, these serve as extracellular targets of novel therapeutic strategies directed at both cancer-driving oncogenes and the modified tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adam L, Vadlamudi R, Kondapaka SB, Chernoff J, Mendelsohn J, Kumar R . (1998). Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J Biol Chem 273: 28238–28246.

    Article  CAS  PubMed  Google Scholar 

  • Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Atfi A, Djelloul S, Chastre E, Davis R, Gespach C . (1997). Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. J Biol Chem 272: 1429–1432.

    Article  CAS  PubMed  Google Scholar 

  • Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL . (2002). p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 115: 3193–3206.

    CAS  PubMed  Google Scholar 

  • Barnard JA, Graves-Deal R, Pittelkow MR, DuBois R, Cook P, Ramsey GW et al. (1994). Auto- and cross-induction within the mammalian epidermal growth factor-related peptide family. J Biol Chem 269: 22817–22822.

    CAS  PubMed  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12: 27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourguignon LY, Zhu H, Zhou B, Diedrich F, Singleton PA, Hung MC . (2001). Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem 276: 48679–48692.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  • DeBusk LM, Hallahan DE, Lin PC . (2004). Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Exp Cell Res 298: 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A . (2001). TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29: 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Dumont N, Arteaga CL . (2003). Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3: 531–536.

    Article  CAS  PubMed  Google Scholar 

  • Erdogan M, Pozzi A, Bhowmick N, Moses HL, Zent R . (2007). Signaling pathways regulating TC21-induced tumorigenesis. J Biol Chem 282: 27713–27720.

    Article  CAS  PubMed  Google Scholar 

  • Fahey MS, Paterson IC, Stone A, Collier AJ, Heung YL, Davies M et al. (1996). Dysregulation of autocrine TGF-beta isoform production and ligand responses in human tumour-derived and Ha-ras-transfected keratinocytes and fibroblasts. Br J Cancer 74: 1074–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ et al. (1999). SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59: 99–106.

    CAS  PubMed  Google Scholar 

  • Fritz G, Just I, Kaina B . (1999). Rho GTPases are over-expressed in human tumors. Int J Cancer 81: 682–687.

    Article  CAS  PubMed  Google Scholar 

  • Graus-Porta D, Beerli RR, Daly JM, Hynes NE . (1997). ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16: 1647–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heasley LE, Han SY . (2006). JNK regulation of oncogenesis. Mol Cells 21: 167–173.

    CAS  PubMed  Google Scholar 

  • Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156: 299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josko J, Mazurek M . (2004). Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monit 10: RA89–RA98.

    CAS  PubMed  Google Scholar 

  • Kim ES, Kim MS, Moon A . (2005). Transforming growth factor (TGF)-beta in conjunction with H-ras activation promotes malignant progression of MCF10A breast epithelial cells. Cytokine 29: 84–91.

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB et al. (1990). Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol Cell Biol 10: 1492–1497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JW, Soung YH, Seo SH, Kim SY, Park CH, Wang YP et al. (2006). Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin Cancer Res 12: 57–61.

    Article  CAS  PubMed  Google Scholar 

  • Lo RS, Wotton D, Massague J . (2001). Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J 20: 128–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maity A, Pore N, Lee J, Solomon D, O'Rourke DM . (2000). Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3’-kinase and distinct from that induced by hypoxia. Cancer Res 60: 5879–5886.

    CAS  PubMed  Google Scholar 

  • Malipiero U, Holler M, Werner U, Fontana A . (1990). Sequence analysis of the promoter region of the glioblastoma derived T cell suppressor factor/transforming growth factor (TGF)-beta 2 gene reveals striking differences to the TGF-beta 1 and -beta 3 genes. Biochem Biophys Res Commun 171: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  • Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL . (2001). Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 61: 8887–8895.

    CAS  PubMed  Google Scholar 

  • Mucsi I, Skorecki KL, Goldberg HJ . (1996). Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor- beta1 on gene expression. J Biol Chem 271: 16567–16572.

    Article  CAS  PubMed  Google Scholar 

  • Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE et al. (2003). Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 23: 8691–8703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH et al. (2004). Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64: 9002–9011.

    Article  CAS  PubMed  Google Scholar 

  • Normanno N, Bianco C, De Luca A, Salomon DS . (2001). The role of EGF-related peptides in tumor growth. Front Biosci 6: D685–D707.

    Article  CAS  PubMed  Google Scholar 

  • Oft M, Akhurst RJ, Balmain A . (2002). Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4: 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Peng SB, Yan L, Xia X, Watkins SA, Brooks HB, Beight D et al. (2005). Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 44: 2293–2304.

    Article  CAS  PubMed  Google Scholar 

  • Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L et al. (1996). Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15: 2452–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N et al. (2001). The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1: 85–94.

    CAS  PubMed  Google Scholar 

  • Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C . (2001). Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem 276: 38527–38535.

    Article  CAS  PubMed  Google Scholar 

  • Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson Jr T et al. (2004). Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Bioorg Med Chem Lett 14: 3581–3584.

    Article  CAS  PubMed  Google Scholar 

  • Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H et al. (2000). Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19: 3013–3020.

    Article  CAS  PubMed  Google Scholar 

  • Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK et al. (2004). Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 101: 1257–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SV, Bell DW, Settleman J, Haber DA . (2007). Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7: 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H et al. (2005). Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65: 1642–1646.

    Article  CAS  PubMed  Google Scholar 

  • Shirakata Y, Komurasaki T, Toyoda H, Hanakawa Y, Yamasaki K, Tokumaru S et al. (2000). Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem 275: 5748–5753.

    Article  CAS  PubMed  Google Scholar 

  • Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J . (2003). Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100: 8430–8435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J et al. (2004). Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431: 525–526.

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL . (2004). Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 279: 24505–24513.

    Article  CAS  PubMed  Google Scholar 

  • Wagner EF, Nebreda AR . (2009). Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537–549.

    Article  CAS  PubMed  Google Scholar 

  • Wang LM, Kuo A, Alimandi M, Veri MC, Lee CC, Kapoor V et al. (1998). ErbB2 expression increases the spectrum and potency of ligand-mediated signal transduction through ErbB4. Proc Natl Acad Sci USA 95: 6809–6814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S et al. (2006a). HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10: 25–38.

    Article  PubMed  Google Scholar 

  • Wang SE, Shin I, Wu FY, Friedman DB, Arteaga CL . (2006b). HER2/Neu (ErbB2) Signaling to Rac1-Pak1 Is Temporally and Spatially Modulated by Transforming Growth Factor {beta}. Cancer Res 66: 9591–9600.

    Article  CAS  PubMed  Google Scholar 

  • Wang SE, Wu FY, Shin I, Qu S, Arteaga CL . (2005). Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} fun. Mol Cell Biol 25: 4703–4715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH et al. (2008). Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 28: 5605–5620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigert C, Sauer U, Brodbeck K, Pfeiffer A, Haring HU, Schleicher ED . (2000). AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-beta1 promoter in mesangial cells. J Am Soc Nephrol 11: 2007–2016.

    CAS  PubMed  Google Scholar 

  • Willis BC, Borok Z . (2007). TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293: L525–L534.

    Article  CAS  PubMed  Google Scholar 

  • Worthylake R, Opresko LK, Wiley HS . (1999). ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 274: 8865–8874.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Ye D, Mendelsohn J, Fan Z . (1999). Augmentation of a humanized anti-HER2 mAb 4D5 induced growth inhibition by a human-mouse chimeric anti-EGF receptor mAb C225. Oncogene 18: 731–738.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NCI K99/R00 CA125892 (SEW), NCI R01 CA62212 (CLA), R01 CA80195 (CLA), ACS Clinical Research Professorship Grant CRP-07-234 (CLA), Breast Cancer Specialized Program of Research Excellence (SPORE) P50 CA98131, and Vanderbilt-Ingram Comprehensive Cancer Center Support Grant P30 CA68485.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S E Wang or C L Arteaga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Yu, Y., Criswell, T. et al. Oncogenic mutations regulate tumor microenvironment through induction of growth factors and angiogenic mediators. Oncogene 29, 3335–3348 (2010). https://doi.org/10.1038/onc.2010.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.112

Keywords

This article is cited by

Search

Quick links