Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice

Abstract

BRAF, a cellular oncogene and effector of RAS-mediated signaling, is activated by mutation in 60% of melanomas. Most of these mutations consist of a V600E substitution resulting in constitutive kinase activation. Mutant BRAF thus represents an important therapeutic target in melanoma. In an effort to produce a pre-clinical model of mutant BRAF function in melanoma, we have generated a mouse expressing BRAF V600E targeted to melanocytes. We show that in these transgenic mice, widespread benign melanocytic hyperplasia with histological features of nevi occurs, with biochemical evidence of senescence. Melanocytic hyperplasia progresses to overt melanoma with an incidence dependent on BRAF expression levels. Melanomas show CDKN2A loss, and genetic disruption of the CDKN2A locus greatly enhances melanoma formation, consistent with collaboration between BRAF activation and CDKN2A loss suggested from studies of human melanoma. The development of melanoma also involves activation of the Mapk and Akt signaling pathways and loss of senescence, findings that faithfully recapitulate those seen in human melanomas. This murine model of mutant BRAF-induced melanoma formation thus provides an important tool for identifying further genetic alterations that cooperates with BRAF and that may be useful in enhancing susceptibility to BRAF-targeted therapeutics in melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F . (2005). Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 65: 4005–4011.

    Article  CAS  Google Scholar 

  • Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L . (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol 21: 2144–2153.

    Article  CAS  Google Scholar 

  • Castresana JS, Rubio MP, Vasquez JJ, Idoate M, Sober AJ, Seizinger BR et al. (1993). Lack of allelic deletion and point mutation as mechanisms of p53 activation in human malignant melanoma. Int J Cancer 55: 562–565.

    Article  CAS  Google Scholar 

  • Chang DL, Qiu W, Ying H, Zhang Y, Chen CY, Xiao ZX . (2007). ARF promotes accumulation of retinoblastoma protein through inhibition of MDM2. Oncogene 26: 4627–4634.

    Article  CAS  Google Scholar 

  • Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C et al. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11: 2822–2834.

    Article  CAS  Google Scholar 

  • Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI . (2006). The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443: 214–217.

    Article  CAS  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10: 459–472.

    Article  CAS  Google Scholar 

  • Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. (2005). Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.

    Article  CAS  Google Scholar 

  • Dai DL, Martinka M, Li G . (2005). Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 23: 1473–1482.

    Article  CAS  Google Scholar 

  • Dhawan P, Singh AB, Ellis DL, Richmond A . (2002). Constitutive activation of Akt/protein kinase B in melanoma leads to up-regulation of nuclear factor-kappaB and tumor progression. Cancer Res 62: 7335–7342.

    CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  Google Scholar 

  • Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye S, Marais R et al. (2006). Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer 95: 581–586.

    Article  CAS  Google Scholar 

  • Goel VK, Lazar AJ, Warneke CL, Redston MS, Haluska FG . (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol 126: 154–160.

    Article  CAS  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95: 496–505.

    Article  CAS  Google Scholar 

  • Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V . (2006). Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 12: 2301s–2307s.

    Article  CAS  Google Scholar 

  • Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA . (2003). Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 63: 5198–5202.

    CAS  Google Scholar 

  • Laud K, Marian C, Avril MF, Barrois M, Chompret A, Goldstein AM et al. (2006). Comprehensive analysis of CDKN2A (p16INK4A/p14ARF) and CDKN2B genes in 53 melanoma index cases considered to be at heightened risk of melanoma. J Med Genet 43: 39–47.

    Article  CAS  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139.

    Article  CAS  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    Article  CAS  Google Scholar 

  • Muthusamy V, Hobbs C, Nogueira C, Cordon-Cardo C, McKee PH, Chin L et al. (2006). Amplification of CDK4 and MDM2 in malignant melanoma. Genes Chromosomes Cancer 45: 447–454.

    Article  CAS  Google Scholar 

  • Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15: 249–254.

    Article  CAS  Google Scholar 

  • Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. (2003). High frequency of BRAF mutations in nevi. Nat Genet 33: 19–20.

    Article  CAS  Google Scholar 

  • Pollock PM, Meltzer PS . (2002). A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2: 5–7.

    Article  CAS  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. (1998). The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713–723.

    Article  CAS  Google Scholar 

  • Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27–37.

    Article  CAS  Google Scholar 

  • Sharma A, Trivedi NR, Zimmerman MA, Tuveson DA, Smith CD, Robertson GP . (2005). Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65: 2412–2421.

    Article  CAS  Google Scholar 

  • Sharpless NE, Kannan K, Xu J, Bosenberg MW, Chin L . (2003). Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22: 5055–5059.

    Article  CAS  Google Scholar 

  • Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW et al. (2004). Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 64: 7002–7010.

    Article  CAS  Google Scholar 

  • Sviderskaya EV, Hill SP, Evans-Whipp TJ, Chin L, Orlow SJ, Easty DJ et al. (2002). p16(Ink4a) in melanocyte senescence and differentiation. J Natl Cancer Inst 94: 446–454.

    Article  CAS  Google Scholar 

  • Tamura A, Halaban R, Moellmann G, Cowan JM, Lerner MR, Lerner AB . (1987). Normal murine melanocytes in culture. in vitro Cell Dev Biol 23: 519–522.

    Article  CAS  Google Scholar 

  • Tief K, Schmidt A, Beermann F . (1998). New evidence for presence of tyrosinase in substantia nigra, forebrain and midbrain. Brain Res Mol Brain Res 53: 307–310.

    Article  CAS  Google Scholar 

  • Tonks ID, Nurcombe V, Paterson C, Zournazi A, Prather C, Mould AW et al. (2003). Tyrosinase-Cre mice for tissue-specific gene ablation in neural crest and neuroepithelial-derived tissues. Genesis 37: 131–138.

    Article  CAS  Google Scholar 

  • Tsao H, Goel V, Wu H, Yang G, Haluska FG . (2004). Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122: 337–341.

    Article  CAS  Google Scholar 

  • Uribe P, Andrade L, Gonzalez S . (2006). Lack of association between BRAF mutation and MAPK ERK activation in melanocytic nevi. J Invest Dermatol 126: 161–166.

    Article  CAS  Google Scholar 

  • Wu H, Goel V, Haluska FG . (2003). PTEN signaling pathways in melanoma. Oncogene 22: 3113–3122.

    Article  CAS  Google Scholar 

  • Zhang Y, Xiong Y, Yarbrough WG . (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant CA095798 to FGH. We thank Mohammad Miri for technical assistance, Dr Louis Montoliu for the tyrosinase promoter, Dr Lynda Chin for the mouse strains, and Dr Philip Tsichlis, Dr Amit Deshpande and Dr Trevor Pemberton for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V K Goel or F G Haluska.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, V., Ibrahim, N., Jiang, G. et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28, 2289–2298 (2009). https://doi.org/10.1038/onc.2009.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.95

Keywords

This article is cited by

Search

Quick links