Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma

Abstract

Lung cancer is the most common cause of cancer mortality worldwide. Non-small-cell lung carcinomas (NSCLCs), which represent around 80% of lung tumors, exhibit poor prognosis and are usually refractory to conventional chemotherapy. Elucidating the molecular and cellular mechanisms that are dysregulated in NSCLCs may lead to new possibilities for targeted therapy or enhanced efficacy of current therapies. Here we demonstrate Wnt pathway activation in around 50% of human NSCLC cell lines and primary tumors, through different mechanisms, including autocrine Wnt pathway activation involving upregulation of specific Wnt ligands. Downregulation of activated Wnt signaling inhibited NSCLC proliferation and induced a more differentiated phenotype. Together, our findings establish importance of activated Wnt signaling in human NSCLCs and offer the possibility of targeting upregulated Wnt signaling as a new therapeutic modality for this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bafico A, Gazit A, Wu-Morgan SS, Yaniv A, Aaronson SA . (1998). Characterization of Wnt-1 and Wnt-2 induced growth alterations and signaling pathways in NIH3T3 fibroblasts. Oncogene 16: 2819–2825.

    Article  CAS  Google Scholar 

  • Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6: 497–506.

    Article  CAS  Google Scholar 

  • Bernasconi NL, Wormhoudt TAM, Laird-Offringa IA . (2000). Post-transcriptional deregulation of myc genes in lung cancer cell lines. Am J Respir Cell Mol Biol 23: 560–565.

    Article  CAS  Google Scholar 

  • Braga VM, Pemberton LF, Duhig T, Gendler SJ . (1992). Spatial and temporal expression of an epithelial mucin, Muc-1, during mouse development. Development 115: 427–437.

    CAS  PubMed  Google Scholar 

  • Clevers H . (2006). Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480.

    Article  CAS  Google Scholar 

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: 1069–1075.

    Article  CAS  Google Scholar 

  • Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H et al. (1973). in vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51: 1417–1423.

    Article  CAS  Google Scholar 

  • Guzman J, Izumi T, Nagai S, Costabel U . (1994). ICAM-1 and integrin expression on isolated human alveolar type II pneumocytes. Eur Respir J 7: 736–739.

    Article  CAS  Google Scholar 

  • He B, You L, Uematsu K, Xu Z, Lee AY, Matsangou M et al. (2004). A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6: 7–14.

    Article  CAS  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . (2002). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172–1183.

    Article  CAS  Google Scholar 

  • Kawano Y, Kypta R . (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116: 2627–2634.

    Article  CAS  Google Scholar 

  • Kim CFB, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121: 823–835.

    Article  CAS  Google Scholar 

  • Klaus A, Birchmeier W . (2008). Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8: 387–398.

    Article  CAS  Google Scholar 

  • Minna JD, Roth JA, Gazdar AF . (2002). Focus on lung cancer. Cancer Cell 1: 49–52.

    Article  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  Google Scholar 

  • Mucenski ML, Nation JM, Thitoff AR, Besnard V, Xu Y, Wert SE et al. (2005). beta-Catenin regulates differentiation of respiratory epithelial cells in vivo. Am J Physiol Lung Cell Mol Physiol 289: L971–L979.

    Article  CAS  Google Scholar 

  • Nakamura N, Kobayashi K, Nakamoto M, Kohno T, Sasaki H, Matsuno Y et al. (2006). Identification of tumor markers and differentiation markers for molecular diagnosis of lung adenocarcinoma. Oncogene 25: 4245–4255.

    Article  CAS  Google Scholar 

  • Ohgaki H, Kros JM, Okamoto Y, Gaspert A, Huang H, Kurrer MO . (2004). APC mutations are infrequent but present in human lung cancer. Cancer Lett 207: 197–203.

    Article  CAS  Google Scholar 

  • Okubo T, Hogan BL . (2004). Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol 3: 11.

    Article  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

    Article  CAS  Google Scholar 

  • Polakis P . (2007). The many ways of Wnt in cancer. Curr Opin Genet Dev 17: 45–51.

    Article  CAS  Google Scholar 

  • Reya T, Clevers H . (2005). Wnt signalling in stem cells and cancer. Nature 434: 843–850.

    CAS  Google Scholar 

  • Reynolds SD, Zemke AC, Giangreco A, Brockway BL, Teisanu RM, Drake JA et al. (2008). Conditional stabilization of beta-catenin expands the pool of lung stem cells. Stem Cells 26: 1337–1346.

    Article  CAS  Google Scholar 

  • Richardson GE, Johnson BE . (1993). The biology of lung cancer. Semin Oncol 20: 105–127.

    CAS  PubMed  Google Scholar 

  • Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR et al. (2007). Myc deletion rescues Apc deficiency in the small intestine. Nature 446: 676–679.

    Article  CAS  Google Scholar 

  • Schiller JH, Bittner G, Oberley TD, Kao C, Harris C, Meisner LF . (1992). Establishment and characterization of a SV40 T-antigen immortalized human bronchial epithelial cell line. in vitro Cell Dev Biol 28A: 461–464.

    Article  CAS  Google Scholar 

  • Shigemitsu K, Sekido Y, Usami N, Mori S, Sato M, Horio Y et al. (2001). Genetic alteration of the beta-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene 20: 4249–4257.

    Article  CAS  Google Scholar 

  • Sunaga N, Kohno T, Kolligs FT, Fearon ER, Saito R, Yokota J . (2001). Constitutive activation of the Wnt signaling pathway by CTNNB1 (beta-catenin) mutations in a subset of human lung adenocarcinoma. Genes Chromosomes Cancer 30: 316–321.

    Article  CAS  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al. (2002). The [beta]-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250.

    Article  CAS  Google Scholar 

  • Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT . (2003). Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13: 680–685.

    Article  CAS  Google Scholar 

  • Venembre P, Boutten A, Seta N, Dehoux MS, Crestani B, Aubier M et al. (1994). Secretion of alpha 1-antitrypsin by alveolar epithelial cells. FEBS Lett 346: 171–174.

    Article  CAS  Google Scholar 

  • You L, He B, Xu Z, Uematsu K, Mazieres J, Mikami I et al. (2004). Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 23: 6170–6174.

    Article  CAS  Google Scholar 

  • Zhang Y, Goss AM, Cohen ED, Kadzik R, Lepore JJ, Muthukumaraswamy K et al. (2008). A Gata6–Wnt pathway required for epithelial stem cell development and airway regeneration. Nat Genet 40: 862–870.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant number 5R01CA071672 from the National Cancer Institute. SV is supported by consecutive post-doctoral fellowships from New York State Department of Health and American Urological Association. We are grateful to Dr J Minna and Dr A Gazdar (University of Texas Southwestern Medical Center, Dallas, TX, USA) for providing us with some NSCLC cell lines. We thank Dr Stefano Rivella (Weill Medical College of Cornell University, New York, NY, USA) for the generous gift of the lentiviral vector, pRRL-SIN-cPPT-PGK-GFP. We also thank Dr Robert Hannigan (Mount Sinai School of Medicine, New York, NY, USA) and Professor Roger Tsien (Howard Hughes Medical Institute, University of California, San Diego, CA, USA) for kindly providing us with the cDNA encoding mOrange. We especially thank Randy Arroyave for excellent technical assistance and Martina Kracikova and Ioana Rus for critical reading of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Aaronson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiri, G., Cherian, M., Vijayakumar, S. et al. Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene 28, 2163–2172 (2009). https://doi.org/10.1038/onc.2009.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.82

Keywords

This article is cited by

Search

Quick links