Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Microarray coupled to quantitative RT–PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells

Abstract

The androgen receptor (AR) mediates the growth-stimulatory effects of androgens in prostate cancer cells. Identification of androgen-regulated genes in prostate cancer cells is therefore of considerable importance for defining the mechanisms of prostate-cancer development and progression. Although several studies have used microarrays to identify AR-regulated genes in prostate cancer cell lines and in prostate tumours, we present here the results of gene expression microarray profiling of the androgen-responsive LNCaP prostate-cancer cell line treated with R1881 for the identification of androgen-regulated genes. We show that the expression of 319 genes is stimulated by 24 h after R1881 addition, with a similar number (300) of genes being significantly repressed. Expression of the upregulated genes, as well as of 60 of the most robustly downregulated genes, was carried out using quantitative RT–PCR (Q-RT–PCR) over a time-course of R1881 treatment from 0 to 72 h. Q-RT–PCR was also carried out following treatment with other AR agonists (dihydrotestosterone, estradiol and medroxyprogesterone) and antagonists (cyproterone acetate, hydroxyflutamide and bicalutamide). This study provides a comprehensive analysis of androgen-regulated gene expression in the LNCaP prostate cancer cell line, and identifies a number of androgen-regulated genes, not described previously, as candidates for mediating androgen responses in prostate cancer cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA et al. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol Cell Biol 22: 1495–1503.

    Article  CAS  Google Scholar 

  • Agoulnik IU, Weigel NL . (2006). Androgen receptor action in hormone-dependent and recurrent prostate cancer. J Cell Biochem 99: 362–372.

    Article  CAS  Google Scholar 

  • Akashi T, Koizumi K, Nagakawa O, Fuse H, Saiki I . (2006). Androgen receptor negatively influences the expression of chemokine receptors (CXCR4, CCR1) and ligand-mediated migration in prostate cancer DU-145. Oncol Rep 16: 831–836.

    CAS  PubMed  Google Scholar 

  • Arnold JT, Liu X, Allen JD, Le H, McFann KK, Blackman MR . (2007). Androgen receptor or estrogen receptor-beta blockade alters DHEA-, DHT-, and E(2)-induced proliferation and PSA production in human prostate cancer cells. Prostate 67: 1152–1162.

    Article  CAS  Google Scholar 

  • Brinkmann AO, Blok LJ, de Ruiter PE, Doesburg P, Steketee K, Berrevoets CA et al. (1999). Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 69: 307–313.

    Article  CAS  Google Scholar 

  • Brooke GN, Parker MG, Bevan CL . (2008). Mechanisms of androgen receptor activation in advanced prostate cancer: differential co-activator recruitment and gene expression. Oncogene 27: 2941–2950.

    Article  CAS  Google Scholar 

  • Burmester JK, Suarez BK, Lin JH, Jin CH, Miller RD, Zhang KQ et al. (2004). Analysis of candidate genes for prostate cancer. Hum Hered 57: 172–178.

    Article  CAS  Google Scholar 

  • Busillo JM, Benovic JL . (2007). Regulation of CXCR4 signaling. Biochim Biophys Acta 1768: 952–963.

    Article  CAS  Google Scholar 

  • Carter HB, Coffey DS . (1990). The prostate: an increasing medical problem. Prostate 16: 39–48.

    Article  CAS  Google Scholar 

  • Chen H, Nandi AK, Li X, Bieberich CJ . (2002). NKX-3.1 interacts with prostate-derived Ets factor and regulates the activity of the PSA promoter. Cancer Res 62: 338–340.

    CAS  PubMed  Google Scholar 

  • Cheng I, Stram DO, Penney KL, Pike M, Le Marchand L, Kolonel LN et al. (2006). Common genetic variation in IGF1 and prostate cancer risk in the Multiethnic Cohort. J Natl Cancer Inst 98: 123–134.

    Article  CAS  Google Scholar 

  • Chintharlapalli S, Burghardt R, Papineni S, Ramaiah S, Yoon K, Safe S . (2005). Activation of Nur77 by selected 1,1-bis(3′-indolyl)-1-(p-substituted phenyl)methanes induces apoptosis through nuclear pathways. J Biol Chem 280: 24903–24914.

    Article  CAS  Google Scholar 

  • Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ et al. (2002). The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 277: 1240–1248.

    Article  CAS  Google Scholar 

  • Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ et al. (1987). The endocrinology and developmental biology of the prostate. Endocr Rev 8: 338–362.

    Article  CAS  Google Scholar 

  • Davies P, Eaton CL . (1991). Regulation of prostate growth. J Endocrinol 131: 5–17.

    Article  CAS  Google Scholar 

  • Dehm SM, Tindall DJ . (2006). Molecular regulation of androgen action in prostate cancer. J Cell Biochem 99: 333–344.

    Article  CAS  Google Scholar 

  • Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.

    Article  Google Scholar 

  • Doesburg P, Kuil CW, Berrevoets CA, Steketee K, Faber PW, Mulder E et al. (1997). Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry 36: 1052–1064.

    Article  CAS  Google Scholar 

  • Feldman BJ, Feldman D . (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45.

    Article  CAS  Google Scholar 

  • Furr BJ, Tucker H . (1996). The preclinical development of bicalutamide: pharmacodynamics and mechanism of action. Urology 47: 13–25 discussion 29–32.

    Article  CAS  Google Scholar 

  • Gottlieb B, Beitel LK, Wu JH, Trifiro M . (2004). The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23: 527–533.

    Article  CAS  Google Scholar 

  • Guo Y, Jacobs SC, Kyprianou N . (1997). Down-regulation of protein and mRNA expression for transforming growth factor-beta (TGF-beta1) type I and type II receptors in human prostate cancer. Int J Cancer 71: 573–579.

    Article  CAS  Google Scholar 

  • Guo Y, Kyprianou N . (1998). Overexpression of transforming growth factor (TGF) beta1 type II receptor restores TGF-beta1 sensitivity and signaling in human prostate cancer cells. Cell Growth Differ 9: 185–193.

    CAS  PubMed  Google Scholar 

  • Guo Y, Kyprianou N . (1999). Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis. Cancer Res 59: 1366–1371.

    CAS  PubMed  Google Scholar 

  • Heemers HV, Verhoeven G, Swinnen JV . (2006). Androgen activation of the sterol regulatory element-binding protein pathway: current insights. Mol Endocrinol 20: 2265–2277.

    Article  CAS  Google Scholar 

  • Hodgson MC, Astapova I, Hollenberg AN, Balk SP . (2007). Activity of androgen receptor antagonist bicalutamide in prostate cancer cells is independent of NCoR and SMRT corepressors. Cancer Res 67: 8388–8395.

    Article  CAS  Google Scholar 

  • Huang da W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J et al. (2007). The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8: R183.

    Article  Google Scholar 

  • Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18: S96–S104.

    Article  Google Scholar 

  • Ke N, Claassen G, Yu DH, Albers A, Fan W, Tan P et al. (2004). Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Res 64: 8208–8212.

    Article  CAS  Google Scholar 

  • Kim MJ, Bhatia-Gaur R, Banach-Petrosky WA, Desai N, Wang Y, Hayward SW et al. (2002). Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res 62: 2999–3004.

    CAS  PubMed  Google Scholar 

  • Kwok WK, Ling MT, Lee TW, Lau TC, Zhou C, Zhang X et al. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res 65: 5153–5162.

    Article  CAS  Google Scholar 

  • Lau KM, LaSpina M, Long J, Ho SM . (2000). Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 60: 3175–3182.

    CAS  PubMed  Google Scholar 

  • Lee MY, Moon JS, Park SW, Koh YK, Ahn YH, Kim KS . (2009). KLF5 enhances SREBP-1 action in androgen-dependent induction of fatty acid synthase in prostate cancer cells. Biochem J 417: 313–322.

    Article  CAS  Google Scholar 

  • Lu NZ, Wardell SE, Burnstein KL, Defranco D, Fuller PJ, Giguere V et al. (2006). International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 58: 782–797.

    Article  CAS  Google Scholar 

  • Masiello D, Cheng S, Bubley GJ, Lu ML, Balk SP . (2002). Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J Biol Chem 277: 26321–26326.

    Article  CAS  Google Scholar 

  • McConnell JD . (1991). Physiologic basis of endocrine therapy for prostatic cancer. Urol Clin North Am 18: 1–13.

    CAS  PubMed  Google Scholar 

  • Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 103: 12098–12102.

    Article  CAS  Google Scholar 

  • Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J et al. (2002). The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA 99: 11890–11895.

    Article  CAS  Google Scholar 

  • Oettgen P, Finger E, Sun Z, Akbarali Y, Thamrongsak U, Boltax J et al. (2000). PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem 275: 1216–1225.

    Article  CAS  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T . (2003). Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115: 109–121.

    Article  CAS  Google Scholar 

  • Qi W, Gao S, Wang Z . (2008). Transcriptional regulation of the TGF-beta1 promoter by androgen receptor. Biochem J 416: 453–462.

    Article  CAS  Google Scholar 

  • Rae JM, Johnson MD, Cordero KE, Scheys JO, Larios JM, Gottardis MM et al. (2006). GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate 66: 886–894.

    Article  CAS  Google Scholar 

  • Shang Y, Myers M, Brown M . (2002). Formation of the androgen receptor transcription complex. Mol Cell 9: 601–610.

    Article  CAS  Google Scholar 

  • Shanmugam I, Cheng G, Terranova PF, Thrasher JB, Thomas CP, Li B . (2007). Serum>glucocorticoid-induced protein kinase-1 facilitates androgen receptor-dependent cell survival. Cell Death Differ 14: 2085–2094.

    Article  CAS  Google Scholar 

  • Shilatifard A, Duan DR, Haque D, Florence C, Schubach WH, Conaway JW et al. (1997). ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc Natl Acad Sci USA 94: 3639–3643.

    Article  CAS  Google Scholar 

  • Simone F, Luo RT, Polak PE, Kaberlein JJ, Thirman MJ . (2003). ELL-associated factor 2 (EAF2), a functional homolog of EAF1 with alternative ELL binding properties. Blood 101: 2355–2362.

    Article  CAS  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article 3.

    Article  Google Scholar 

  • Sobel RE, Sadar MD . (2005). Cell lines used in prostate cancer research: a compendium of old and new lines–part 1. J Urol 173: 342–359.

    Article  CAS  Google Scholar 

  • Steketee K, Timmerman L, Ziel-van der Made AC, Doesburg P, Brinkmann AO, Trapman J . (2002). Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer 100: 309–317.

    Article  CAS  Google Scholar 

  • Storlazzi CT, Mertens F, Nascimento A, Isaksson M, Wejde J, Brosjo O et al. (2003). Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet 12: 2349–2358.

    Article  CAS  Google Scholar 

  • Takahashi Y, Perkins SN, Hursting SD, Wang TT . (2007). 17beta-Estradiol differentially regulates androgen-responsive genes through estrogen receptor-beta- and extracellular-signal regulated kinase-dependent pathways in LNCaP human prostate cancer cells. Mol Carcinog 46: 117–129.

    Article  CAS  Google Scholar 

  • Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W et al. (2007). Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res 67: 5117–5125.

    Article  CAS  Google Scholar 

  • Taplin ME, Balk SP . (2004). Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 91: 483–490.

    Article  CAS  Google Scholar 

  • Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E . (1992a). Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 31: 2393–2399.

    Article  CAS  Google Scholar 

  • Veldscholte J, Berrevoets CA, Ris-Stalpers C, Kuiper GG, Jenster G, Trapman J et al. (1992b). The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol 41: 665–669.

    Article  CAS  Google Scholar 

  • Wolf I, O′Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT et al. (2006). 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res 66: 7818–7823.

    Article  CAS  Google Scholar 

  • Xiao W, Zhang Q, Jiang F, Pins M, Kozlowski JM, Wang Z . (2003). Suppression of prostate tumor growth by U19, a novel testosterone-regulated apoptosis inducer. Cancer Res 63: 4698–4704.

    CAS  PubMed  Google Scholar 

  • Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK et al. (2005). The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11: 6442–6449.

    Article  CAS  Google Scholar 

  • Yoon HG, Wong J . (2006). The corepressors silencing mediator of retinoid and thyroid hormone receptor and nuclear receptor corepressor are involved in agonist- and antagonist-regulated transcription by androgen receptor. Mol Endocrinol 20: 1048–1060.

    Article  CAS  Google Scholar 

  • Yuen HF, Chua CW, Chan YP, Wong YC, Wang X, Chan KW . (2006). Id proteins expression in prostate cancer: high-level expression of Id-4 in primary prostate cancer is associated with development of metastases. Mod Pathol 19: 931–941.

    Article  CAS  Google Scholar 

  • Zha S, Ferdinandusse S, Denis S, Wanders RJ, Ewing CM, Luo J et al. (2003). Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res 63: 7365–7376.

    CAS  PubMed  Google Scholar 

  • Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ et al. (2005). Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 63: 316–323.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the group for advice and support. Our particular thanks go to Drs Greg Brooke and Charlotte Bevan for discussions, and to Dr Lev Soinov for aiding the analysis of the microarray data. This work was carried out through the support of the Joron trust, Hammersmith Hospital trustees, Prostate Cancer Charity and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Ali or L Buluwela.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngan, S., Stronach, E., Photiou, A. et al. Microarray coupled to quantitative RT–PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28, 2051–2063 (2009). https://doi.org/10.1038/onc.2009.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.68

Keywords

This article is cited by

Search

Quick links