Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor

Abstract

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib are effective therapies against mutant non-small cell lung cancers (NSCLCs). Treatment is limited by the development of resistance in part explained by the gain of a secondary EGFR mutation, T790M, at the gatekeeper residue. Irreversible EGFR inhibitors, including PF00299804, are effective in vitro and in vivo against EGFR mutant tumors that contain EGFR T790M and are currently under clinical development. In this study, we generate models of resistance to PF00299804, using cell lines with EGFR T790M and show that the PF00299804-resistant models develop focal amplification of EGFR that preferentially involves the T790M-containing allele. These PF00299804-resistant cell lines remain dependent on EGFR for growth as downregulation of EGFR by shRNA compromises their viability. We show that resistance to PF00299804 arises, at least in part, through selection of a pre-existing EGFR T790M-amplified clone both in vitro and using a xenograft model in vivo. Our findings show that EGFR T790M is a common resistance mechanism to both reversible, and when amplified, the irreversible EGFR kinase inhibitors further emphasizing the need to develop more potent therapies against EGFR T790M. These findings can be used to guide studies of patient tumor specimens from ongoing clinical trials of irreversible EGFR kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Albanell J, Rojo F, Averbuch S, Feyereislova A, Mascaro JM, Herbst R et al. (2002). Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol 20: 110–124.

    Article  CAS  Google Scholar 

  • Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF et al. (2006). Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12: 6494–6501.

    Article  CAS  Google Scholar 

  • Besse B, Eaton Kd, Soira JC, Lynch TJ, Miller V, Wong KK et al. (2008). Neratinib (HKI272) an irreversible pan-ErbB receptor tyrosine kinase inhibtor: preliminary results of a phase 2 tiral in patients with advanced non-small cell lung cancer. Euro J Cancer 6: 64; abstract 203..

    Article  Google Scholar 

  • Bradeen HA, Eide CA, O'Hare T, Johnson KJ, Willis SG, Lee FY et al. (2006). Comparison of imatinib mesylate, dasatinib (BMS-354825) and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 108: 2332–2338.

    Article  CAS  Google Scholar 

  • Carter TA, Wodicka LM, Shah NP, Velasco AM, Fabian MA, Treiber DK et al. (2005). Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA 102: 11011–11016.

    Article  CAS  Google Scholar 

  • Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. (2003). A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348: 1201–1214.

    Article  CAS  Google Scholar 

  • Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368: 1329–1338.

    Article  CAS  Google Scholar 

  • Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. (2001). Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042.

    Article  CAS  Google Scholar 

  • Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C et al. (2005). ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA 102: 3788–3793.

    Article  CAS  Google Scholar 

  • Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borras AM, Gale CM et al. (2006). Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest 116: 2695–2706.

    Article  CAS  Google Scholar 

  • Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T et al. (2007a). PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 67: 11924–11932.

    Article  CAS  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. (2007b). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039–1043.

    Article  CAS  Google Scholar 

  • Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ . (2007). MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109: 500–502.

    Article  CAS  Google Scholar 

  • Godin-Heymann N, Bryant I, Rivera MN, Ulkus L, Bell DW, Riese 2nd DJ et al. (2007). Oncogenic activity of epidermal growth factor receptor kinase mutant alleles is enhanced by the T790M drug resistance mutation. Cancer Res 67: 7319–7326.

    Article  CAS  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876–880.

    Article  CAS  Google Scholar 

  • Guo T, Agaram NP, Wong GC, Hom G, D'Adamo D, Maki RG et al. (2007). Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor. Clin Cancer Res 13: 4874–4881.

    Article  CAS  Google Scholar 

  • Inoue A, Suzuki T, Fukuhara T, Maemondo M, Kimura Y, Morikawa N et al. (2006). Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 24: 3340–3346.

    Article  CAS  Google Scholar 

  • Janne PA, Schellens JH, Engelman JA, Eckhardt SG, Milham R, Denis LJ et al. (2008). Preliminary activity and safety results from a phase I clinical trial of PF-00299804, an irreversible pan-HER inhibitor, in patients (pts) with NSCLC. J Clin Oncol 26(Suppl): abstract 8027.

    Article  Google Scholar 

  • Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. (2002). Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346: 645–652.

    Article  CAS  Google Scholar 

  • Kaufman RJ, Schimke RT . (1981). Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol Cell Biol 1: 1069–1076.

    Article  CAS  Google Scholar 

  • Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352: 786–792.

    Article  CAS  Google Scholar 

  • Kosaka T, Yatabe Y, Endoh H, Yoshida K, Hida T, Tsuboi M et al. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 12: 5764–5769.

    Article  CAS  Google Scholar 

  • Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA 102: 7665–7670.

    Article  CAS  Google Scholar 

  • Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR et al. (2008). BIBW2992 an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27: 4702–4711.

    Article  CAS  Google Scholar 

  • Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV et al. (2008). Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359: 366–377.

    Article  CAS  Google Scholar 

  • Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361: 947–957.

    Article  CAS  Google Scholar 

  • Mukohara T, Engelman JA, Hanna NH, Yeap BY, Kobayashi S, Lindeman N et al. (2005). Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst 97: 1185–1194.

    Article  CAS  Google Scholar 

  • Ono M, Hirata A, Kometani T, Miyagawa M, Ueda S, Kinoshita H et al. (2004). Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther 3: 465–472.

    CAS  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500.

    Article  CAS  Google Scholar 

  • Quintas-Cardama A, Cortes J . (2008). Therapeutic options against BCR-ABL1T315I positive chronic myelogenous leukemia. Clin Cancer Res 14: 4392–4399.

    Article  CAS  Google Scholar 

  • Rothenberg SM, Engelman JA, Le S, Riese 2nd DJ, Haber DA, Settleman J . (2008). Modeling oncogene addiction using RNA interference. Proc Natl Acad Sci USA 105: 12480–12484.

    Article  CAS  Google Scholar 

  • Sawai A, Chandarlapaty S, Greulich H, Gonen M, Ye Q, Arteaga CL et al. (2008). Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res 68: 589–596.

    Article  CAS  Google Scholar 

  • Schellens JH, Britten CD, camidge DR, D Boss, Wong S, Diab S et al. (2007). First-in-human study of the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of PF-00299804, a small molecule irreversible pan-HER inhibitor in patients with advanced cancer. J Clin Oncol, 2007 ASCO Annu Meet Proc Part I 25(Suppl): 3599.

    Google Scholar 

  • Schimke RT, Kaufman RJ, Alt FW, Kellems RF . (1978). Gene amplification and drug resistance in cultured murine cells. Science 202: 1051–1055.

    Article  CAS  Google Scholar 

  • Sequist LV, Martins RG, Spigel D, Grunberg SM, Spira A, Janne PA et al. (2008). First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 26: 2442–2449.

    Article  CAS  Google Scholar 

  • Shah NP, Kasap C, Weier C, Balbas M, Nicoll JM, Bleickardt E et al. (2008). Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14: 485–493.

    Article  CAS  Google Scholar 

  • Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. (2002). Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2: 117–125.

    Article  CAS  Google Scholar 

  • Shimamura T, Li D, Ji H, Haringsma HJ, Liniker E, Borgman CL et al. (2008). Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Res 68: 5827–5838.

    Article  CAS  Google Scholar 

  • Tamborini E, Bonadiman L, Greco A, Albertini V, Negri T, Gronchi A et al. (2004). A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 127: 294–299.

    Article  CAS  Google Scholar 

  • Vikis H, Sato M, James M, Wang D, Wang Y, Wang M et al. (2007). EGFR-T790M is a rare lung cancer susceptibility allele with enhanced kinase activity. Cancer Res 67: 4665–4670.

    Article  CAS  Google Scholar 

  • Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro GI et al. (2009). A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin Cancer Res 15: 2552–2558.

    Article  CAS  Google Scholar 

  • Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK et al. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 105: 2070–2075.

    Article  CAS  Google Scholar 

  • Yuza Y, Glatt KA, Jiang J, Greulich H, Minami Y, Woo MS et al. (2007). Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biol Ther 6: 661–667.

    Article  CAS  Google Scholar 

  • Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L et al. (2005). Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res 65: 5561–5570.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from the National Institutes of Health RO1CA114465-04 (PAJ), R01CA135257-01 (PAJ, JAE, CL), R01CA137008-01 (JAE, PAJ), National Cancer Institute Lung SPORE P50CA090578 (PAJ, JAE and DJK), American Cancer Society RSG0610201CCE (PAJ, JAE), and the Hazel and Samuel Bellin research fund (PAJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P A Jänne.

Ethics declarations

Competing interests

Dr Jänne receives royalties as a co-inventor on a patent awarded for the discovery of EGFR mutations, licensed to Genzyme Genetics, which was not involved in this study. Dr Christensen is an employee of Pfizer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercan, D., Zejnullahu, K., Yonesaka, K. et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene 29, 2346–2356 (2010). https://doi.org/10.1038/onc.2009.526

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.526

Keywords

This article is cited by

Search

Quick links