Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plakoglobin interacts with and increases the protein levels of metastasis suppressor Nm23-H2 and regulates the expression of Nm23-H1

Abstract

Plakoglobin (γ-catenin) is a homolog of β-catenin with similar dual adhesive and signaling functions. The adhesive function of these proteins is mediated by their interactions with cadherins, whereas their signaling activity is regulated by association with various intracellular partners. In this respect, β-catenin has a well-defined oncogenic activity through its role in the Wnt signaling pathway, whereas plakoglobin acts as a tumor/metastasis suppressor through mechanisms that remain unclear. We previously expressed plakoglobin in SCC9 squamous carcinoma cells (SCC9-P) and observed a mesenchymal-to-epidermoid transition. Comparison of the protein and RNA profiles of parental SCC9 cells and SCC9-P transfectants identified various differentially expressed proteins and transcripts, including the nonmetastatic protein 23 (Nm23). In this study, we show that Nm23-H1 mRNA and Nm23-H2 protein are increased after plakoglobin expression. Coimmunoprecipitation and confocal microscopy studies using SCC9-P and various epithelial cell lines with endogenous plakoglobin expression revealed that Nm23 interacts with plakoglobin, cadherins and α-catenin. Furthermore, Nm23-H2 is the primary isoform involved in these interactions, which occur prominently in the cytoskeleton-associated pool of cellular proteins. In addition, we show that plakoglobin–Nm23 interaction requires the N-terminal (α-catenin interacting) domain of plakoglobin. Our data suggest that by increasing the expression and stability of Nm23, plakoglobin has a role in regulating the metastasis suppressor activity of Nm23, which may further provide a potential mechanism for the tumor/metastasis suppressor function of plakoglobin itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arnaud-Dabernat S, Masse K, Smani M, Peuchant E, Landry M, Bourbon PM et al. (2004). Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-M1/NDP kinase A overexpression in BAF3 cells. Both NDP kinases protect the cells from oxidative stress-induced death. Exp Cell Res 301: 293–304.

    Article  CAS  PubMed  Google Scholar 

  • Ayabe T, Tomita M, Matsuzaki Y, Ninomiya H, Hara M, Shimizu T et al. (2004). Micrometastasis and Expression of nm23 Messenger RNA of Lymph Nodes from Lung Cancer and the Postoperative Clinical Outcome. Ann Thorac Cardio Surg 10: 152–159.

    Google Scholar 

  • Bago R, Pavelić J, Vlahoviček GM, Bosnar MH . (2009). Nm23-H1 promotes adhesion of CAL 27 cells in vitro. Mol Carcinog 48: 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin JM, Nelson WJ . (2008). Bench to bedside and back again: molecular mechanisms of alpha-catenin function and roles in tumorigenesis. Semin Cancer Biol 18: 53–64.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ze'ev A, Geiger B . (1998). Differential molecular interactions of β−catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 10: 629–639.

    Article  CAS  PubMed  Google Scholar 

  • Bosnar MH, de Gunzburg J, Bago R, Brecevic L, Weber I, Pavelic J . (2004). Subcellular localization of A and B Nm23/NDPK subunits. Exp Cell Res 298: 275–284.

    Article  CAS  PubMed  Google Scholar 

  • Bosnar MH, Bago R, Cetkovic H . (2009). Subcellular localization of Nm23/NDPK A and B isoforms: a reflection of their biological function? Mol Cell Biochem 329: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Che G, Chen J, Liu L, Wang Y, Li L, Qin Y et al. (2006). Transfection of nm23-H1 increased expression of beta-Catenin, E-Cadherin and TIMP-1 and decreased the expression of MMP-2, CD44v6 and VEGF and inhibited the metastatic potential of human non-small cell lung cancer cell line L9981. Neoplasma 53: 530–537.

    CAS  PubMed  Google Scholar 

  • Chen XF, Zhang HT, Qi QY, Sun MM, Tao LY . (2005). Expression of E-cadherin and nm23 is associated with the clinicopathological factors of human non-small cell lung cancer in China. Lung Cancer 48: 69–76.

    Article  PubMed  Google Scholar 

  • Chidgey M, Dawson C . (2007). Desmosomes: a role in cancer? Br J Cancer 96: 1783–1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel JM, Reynolds AB . (1995). The Tyrosine Kinase Substrate p120cas Binds Directly to E-Cadherin but Not to the Adenomatous Polyposis Coli Protein or α-Catenin. Mol Cell Biochem 15: 4819–4824.

    Article  CAS  Google Scholar 

  • Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI . (2005). Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123: 903–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J . (2003). Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112: 659–672.

    Article  CAS  PubMed  Google Scholar 

  • Garrod D, Chidgey M . (2008). Desmosome structure, composition and function. Biochim Biophys Acta 1778: 572–587.

    Article  CAS  PubMed  Google Scholar 

  • Garrod D, Kimura TE . (2008). Hyper-adhesion: a new concept in cell-cell adhesion. Biochem Soc Trans 36: 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Gavert N, Ben-Ze'ev A . (2007). β−catenin signaling in biological control and cancer. J Cell Biochem 102: 820–828.

    Article  CAS  PubMed  Google Scholar 

  • Green KJ, Simpson CL . (2007). Desmosomes: new perspectives on a classic. J Invest Dermatol 127: 2499–2515.

    Article  CAS  PubMed  Google Scholar 

  • Hartsock A, Nelson WJ . (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778: 660–669.

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Holthofer B, Windoffer R, Troyanovsky S, Leube RE . (2007). Structure and function of desmosomes. Int Rev Cytol 264: 65–163.

    Article  PubMed  Google Scholar 

  • Huang H, He X . (2008). Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20: 119–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber O, Weiske J . (2008). Beta-catenin takes a HIT. Cell Cycle 7: 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  • Igawa M, Rukstalis DB, Tanabe T, Chodak GW . (1994). High levels of nm23 expression are related to cell proliferation in human prostate cancer. Cancer Res 54: 1313–1318.

    CAS  PubMed  Google Scholar 

  • Jeanes A, Gottardi CJ, Yap AS . (2008). Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27: 6920–6929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji C, Li L, Gebre M, Pasdar M, Li L . (2005). Identification and quantification of differentially expressed proteins in E-cadherin deficient SCC9 cells and SCC9 transfectants expressing E-cadherin by dimethyl isotope labeling, LC-MALDI MS and MS/MS. J Proteome Res 4: 1419–1426.

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Liu G, Zhang CH, Lu CH, Xiong S, Zhang MY et al. (2009). Nm23-H1 regulates the proliferation and differentiation of the human chronic myeloid leukemia K562 cell line: A functional proteomics study. Life Sci 84: 458–467.

    Article  CAS  PubMed  Google Scholar 

  • Jin T, George Fantus I, Sun J . (2008). Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal 20: 1697–1704.

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Paek YW, Moon KS, Wee SC, Ryu HH, Jeong YI et al. (2006). Expression of Nm23 in gliomas and its effect on migration and invasion in vitro. Anticancer Res 26: 249–258.

    CAS  PubMed  Google Scholar 

  • Kanazawa Y, Ueda Y, Shimasaki M, Katsuda S, Yamamoto N, Tomita K et al. (2008). Down-regulation of plakoglobin in soft tissue sarcoma is associated with a higher risk of pulmonary metastasis. Anticancer Res 28: 655–664.

    CAS  PubMed  Google Scholar 

  • Khan MH, Yasuda M, Higashino F, Haque S, Kohgo T, Nakamura M et al. (2001). nm23-H1 suppresses invasion of oral squamous cell carcinoma-derived cell lines without modifying matrix metalloproteinase-2 and matrix metalloproteinase-9 expression. Am J Pathol 158: 1785–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J . (2009). Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 329: 167–173.

    Article  CAS  PubMed  Google Scholar 

  • Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR et al. (2000). g-Catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of b-catenin. Genes Dev 14: 1319–1331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe ML, Milon L, Munier A, Mehus JG, Lambeth DO . (2000). The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 32: 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Lam L, Hu X, Aktary Z, Andrews DW, Pasdar M . (2009). Tamoxifen and ICI 182,780 increase Bcl-2 levels and inhibit growth of breast carcinoma cells by modulating PI3K/AKT, ERK and IGF-1R pathways independent of ERalpha. Breast Cancer Res Treat 118: 605–621.

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Lee H . (1999). Inhibitory activity of nm23-H1 on invasion and colonization of human prostate carcinoma cells is not mediated by its NDP kinase activity. Cancer Lett 145: 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Lee MY, Jeong WJ, Oh JW, Choi KY . (2009). NM23H2 inhibits EGF- and Ras-induced proliferation of NIH3T3 cells by blocking the ERK pathway. Cancer Lett 275: 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chapman K, Hu H, Wong A, Pasdar M . (2007). Modulation of the oncogenic potential of beta−catenin by the subcellular localization of plakoglobin. Mol Carcinog 46: 824–838.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Gallin W, Lauzon G, Pasdar M . (1998). L-CAM expression induces fibroblast-epidermoid transition in squamous carcinoma cells and down regulates the endogenous N-cadherin. J Cell Sci 111: 1005–1019.

    CAS  PubMed  Google Scholar 

  • MacDonald NJ, De La Rosa A, Benedict MA, Freije JMP, Jrutsch H, Steeg PS . (1993). A serine phosphorylation of Nm23, and not its nucleoside diphosphate kinase activity, correlates with suppression of tumor metastatic potential. J Biol Chem 268: 25780–25789.

    CAS  PubMed  Google Scholar 

  • McDermott WG, Boissan M, Lacombe ML, Steeg PS, Horak CE . (2008). Nm23-H1 homologs suppress tumor cell motility and anchorage independent growth. Clin Exp Metastasis 25: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki H, Fukuda M, Ishijima Y, Takagi Y, Iimura T, Negishi A et al. (1999). Overexpression of nm23-H2/NDP kinase B in a human oral squamous cell carcinoma cell line results in reduced metastasis, differentiated phenotype in the metastatic site, and growth factor-independent proliferative activity in culture. Clin Cancer Res 5: 4301–4307.

    CAS  PubMed  Google Scholar 

  • Morton RA, Ewing CM, Nagafuchi A, Tsukita S, Isaacs WB . (1993). Reduction of E-cadherin levels and deletion of the A-catenin gene in human prostate cancer cells. Cancer Res 53: 3585–3590.

    CAS  PubMed  Google Scholar 

  • Nakanishi K, Kumaki F, Hiroi S, Mukai M, Ikeda E, Kawai T . (2006). Mre11 expression in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Arch Pathol Lab Med 130: 1330–1334.

    CAS  PubMed  Google Scholar 

  • Narkio-Makela M, Pukkila M, Lagerstedt E, Virtaniemi J, Pirinen R, Johansson R et al. (2009). Reduced gamma-catenin expression and poor survival in oral squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 135: 1035–1040.

    Article  PubMed  Google Scholar 

  • Nelson WJ . (2008). Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans 36: 149–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niessen CM, Gottardi CJ . (2008). Molecular components of the adherens junction. Biochim Biophys Acta 1778: 562–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios F, Schweitzer JK, Boshans RL, D'Souza-Schorey C . (2002). ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4: 929–936.

    Article  CAS  PubMed  Google Scholar 

  • Pantel K, Passlick B, Vogt J, Stosiek P, Angstwurm M, Seen-Hibler R et al. (1998). Reduced expression of plakoglobin indicates an unfavorable prognosis in subsets of patients with non-small-cell lung cancer. J Clin Oncol 16: 1407–1413.

    Article  CAS  PubMed  Google Scholar 

  • Parker HR, Li Z, Sheinin H, Lauzon GJ, Pasdar M . (1998). Plakoglobin induces desmosome formation and epidermoid phenotype in N-cadherin-expressing squamous carcinoma cells deficient in plakoglobin and E-cadherin. Cell Motil Cytoskeleton 40: 87–100.

    Article  CAS  PubMed  Google Scholar 

  • Pasdar M, Li Z, Chlumecky V . (1995). Plakoglobin: kinetics of synthesis, phosphorylation, stability, and interactions with desmoglein and E-cadherin. Cell Motil Cytoskeleton 32: 258–272.

    Article  CAS  PubMed  Google Scholar 

  • Pasdar M, Nelson WJ . (1988a). Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. I. Biochemical analysis. J Cell Biol 106: 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Pasdar M, Nelson WJ . (1988b). Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. II. Morphological analysis. J Cell Biol 106: 687–695.

    Article  CAS  PubMed  Google Scholar 

  • Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM . (1992). The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol 118: 681–691.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Fuchs E . (2006). Catenins: keeping cells from getting their signals crossed. Dev Cell 11: 601–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postel EH, Berberich SJ, Rooney JW, Kaetzel DM . (2000). Human NM23/nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements. J Bioen Biomem 32: 277–284.

    Article  CAS  Google Scholar 

  • Reiger-Christ KM, Ng L, Hanley RS, Durrani O, Ma H, Yee AS . (2005). Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential. Br J Cancer 92: 2153–2159.

    Article  Google Scholar 

  • Sacco PA, McGranahan TM, Wheelock MJ, Johnson KR . (1995). Identification of plakoglobin domains required for association with N-cadherin and α-catenin. J Biol Chem 270: 20201–20206.

    Article  CAS  PubMed  Google Scholar 

  • Schuldiner O, Shor S, Benvenisty N . (2002). A computerized database-scan to identify c-MYC targets. Gene 292: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Simcha I, Geiger B, Yehuda-Levenberg S, Salomon D, Ben-Ze'ev A . (1996). Suppresion of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J Cell Biol 133: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B et al. (1998). Differential nuclear translocation and transactivation potential of β−catenin and plakoglobin. J Cell Biol 141: 1433–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME . (1998). Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 48: 6550–6554.

    Google Scholar 

  • Steeg PS, Horak CE, Miller KD . (2008). Clinical-translational approaches to the Nm23-H1 metastasis suppressor. Clin Cancer Res 14: 5006–5012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeg PS, Ouatas T, Halverson D, Palmieri D, Salermo M . (2003). Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Stemmler MP . (2008). Cadherins in development and cancer. Mol Biosyst 4: 835–850.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki E, Ota S, Tsukuda K, Okita A, Matsuoka K, Murakami M et al. (2004). nm23-H1 reduces in vitro cell migration and the liver metastatic potential of colon cancer cells by regulating myosin light chain phosphorylation. Int J Cancer 108: 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Syed V, Mukherjee K, Lyons-Weiler J, Lau KM, Mashima T, Tsuruo T et al. (2005). Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene 24: 1774–1787.

    Article  CAS  PubMed  Google Scholar 

  • Tee YT, Chen GD, Lin LY, Ko JL, Wang PH . (2006). Nm23-H1: a metastasis-associated gene. Taiwan J Obstet Gynecol 45: 107–113.

    Article  PubMed  Google Scholar 

  • Torlakovic E, Lilleby W, Torlakovic G, Fosså SD, Chibbar R . (2002). Prostate carcinoma expression of estrogen receptor-beta as detected by PPG5/10 antibody has positive association with primary Gleason grade and Gleason score. Hum Pathol 33: 646–651.

    Article  CAS  PubMed  Google Scholar 

  • van Roy F, Berx G . (2008). The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65: 3756–3788.

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD, Steeg PS, Vu ND . (1997). Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA 94: 9000–9005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winn RA, Bremnes RM, Bemis L, Franklin WA, Miller YE, Cool C et al. (2002). γ-catenin expression is reduced or absent in a subset of human lung cancers and re-expression inhibits transformed cell growth. Oncogene 21: 7497–7506.

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ . (2005). Deconstructing the cadherin-catenin-actin complex. Cell 123: 889–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhurinsky J, Shtutman M, Ben-Ze'ev A . (2000a). Differential mechanisms of LEF/TCF family-dependent transcriptional activation by β−catenin and plakoglobin. Mol Cell Biol 20: 4238–4252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhurinsky J, Shtutman M, Ben-Ze'ev A . (2000b). Plakoglobin and β−catenin: protein interactions, regulation and biological roles. J Cell Sci 113: 3127–3139.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Alberta Cancer Research Institute and the Canadian Breast Cancer Foundation—Prairies/NWT Chapter (MP) and Canadian Institutes of Health Research Frederick Banting and Charles Best Canada Graduate Scholarships award (ZA). LL is supported by the Canadian Research Chairs Program. JM is supported by the Alberta Cancer Research Institute and Alberta Cancer Foundation. ZA currently holds a Killam Doctoral Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Pasdar.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktary, Z., Chapman, K., Lam, L. et al. Plakoglobin interacts with and increases the protein levels of metastasis suppressor Nm23-H2 and regulates the expression of Nm23-H1. Oncogene 29, 2118–2129 (2010). https://doi.org/10.1038/onc.2009.495

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.495

Keywords

This article is cited by

Search

Quick links