Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Copine-III interacts with ErbB2 and promotes tumor cell migration

Abstract

ErbB2 amplification and overexpression in breast cancer correlates with aggressive disease and poor prognosis. To find novel ErbB2-interacting proteins, we used stable isotope labeling of amino acids in cell culture followed by peptide affinity pull-downs and identified specific binders using relative quantification by mass spectrometry. Copine-III, a member of a Ca2+-dependent phospholipid-binding protein family, was identified as binding to phosphorylated Tyr1248 of ErbB2. In breast cancer cells, Copine-III requires Ca2+ for binding to the plasma membrane, where it interacts with ErbB2 upon receptor stimulation, an interaction that is dependent on receptor activity. Copine-III also binds receptor of activated C kinase 1 and colocalizes with phosphorylated focal adhesion kinase at the leading edge of migrating cells. Importantly, knockdown of Copine-III in T47D breast cancer cells causes a decrease in Src kinase activation and ErbB2-dependent wound healing. Our data suggest that Copine-III is a novel player in the regulation of ErbB2-dependent cancer cell motility. In primary breast tumors, high CPNE3 RNA levels significantly correlate with ERBB2 amplification. Moreover, in an in situ tissue microarray analysis, we detected differential protein expression of Copine-III in normal versus breast, prostate and ovarian tumors, suggesting a more general role for Copine-III in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Akiyama T, Matsuda S, Namba Y, Saito T, Toyoshima K, Yamamoto T . (1991). The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol Cell Biol 11: 833–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP . (2005). The C2 domain of PKCdelta is a phosphotyrosine binding domain. Cell 121: 271–280.

    Article  CAS  PubMed  Google Scholar 

  • Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M . (2003). A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21: 315–318.

    Article  CAS  PubMed  Google Scholar 

  • Brunton VG, Avizienyte E, Fincham VJ, Serrels B, Metcalf 3rd CA, Sawyer TK et al. (2005). Identification of Src-specific phosphorylation site on focal adhesion kinase: dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 65: 1335–1342.

    Article  CAS  PubMed  Google Scholar 

  • Church DL, Lambie EJ . (2003). The promotion of gonadal cell divisions by the Caenorhabditis elegans TRPM cation channel GON-2 is antagonized by GEM-4 copine. Genetics 165: 563–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Citri A, Yarden Y . (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Cox EA, Bennin D, Doan AT, O'Toole T, Huttenlocher A . (2003). RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol Biol Cell 14: 658–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J et al. (1998). The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J Biol Chem 273: 1393–1402.

    Article  CAS  PubMed  Google Scholar 

  • Dankort D, Maslikowski B, Warner N, Kanno N, Kim H, Wang Z et al. (2001). Grb2 and Shc adapter proteins play distinct roles in Neu (ErbB-2)-induced mammary tumorigenesis: implications for human breast cancer. Mol Cell Biol 21: 1540–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dankort DL, Wang Z, Blackmore V, Moran MF, Muller WJ . (1997). Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation. Mol Cell Biol 17: 5410–5425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D et al. (2005). Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24: 4660–4671.

    Article  CAS  PubMed  Google Scholar 

  • Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD et al. (2002). Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1: 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk A, Almedom RB, Schedletzky T, Anderson SD, Yates 3rd JR, Schafer WR . (2005). Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO J 24: 2566–2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graus-Porta D, Beerli RR, Daly JM, Hynes NE . (1997). ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16: 1647–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Valero M, Marin-Vicente C, Gomez-Fernandez JC, Corbalan-Garcia S . (2007). The C2 domains of classical PKCs are specific PtdIns(4,5)P2-sensing domains with different affinities for membrane binding. J Mol Biol 371: 608–621.

    Article  CAS  PubMed  Google Scholar 

  • Hazan R, Margolis B, Dombalagian M, Ullrich A, Zilberstein A, Schlessinger J . (1990). Identification of autophosphorylation sites of HER2/neu. Cell Growth Differ 1: 3–7.

    CAS  PubMed  Google Scholar 

  • Hendrix ND, Wu R, Kuick R, Schwartz DR, Fearon ER, Cho KR . (2006). Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res 66: 1354–1362.

    Article  CAS  PubMed  Google Scholar 

  • Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas 3rd CF, Hynes NE . (2003). The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA 100: 8933–8938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holbro T, Hynes NE . (2004). ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44: 195–217.

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Grisafi P, Cheng SH, Fink GR . (2001). Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15: 2263–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes NE, Lane HA . (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5: 341–354.

    Article  CAS  PubMed  Google Scholar 

  • Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV . (1997). Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390: 632–636.

    Article  CAS  PubMed  Google Scholar 

  • Kenworthy AK . (2001). Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods 24: 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Kheifets V, Mochly-Rosen D . (2007). Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Pharmacol Res 55: 467–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiely PA, Baillie GS, Barrett R, Buckley DA, Adams DR, Houslay MD et al. (2009). Phosphorylation of RACK1 on tyrosine 52 by c-Abl is required for IGF-I-mediated regulation of focal adhesion kinase (FAK). J Biol Chem 284: 20263–20274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA . (1997). Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137: 481–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane HA, Beuvink I, Motoyama AB, Daly JM, Neve RM, Hynes NE . (2000). ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol 20: 3210–3223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marone R, Hess D, Dankort D, Muller WJ, Hynes NE, Badache A . (2004). Memo mediates ErbB2-driven cell motility. Nat Cell Biol 6: 515–522.

    Article  CAS  PubMed  Google Scholar 

  • McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ . (2002). The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62: 1261–1273.

    Article  CAS  PubMed  Google Scholar 

  • Meira M, Masson R, Stagljar I, Lienhard S, Maurer F, Boulay A et al. (2009). Memo is a cofilin-interacting protein that influences PLCgamma1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration. J Cell Sci 122: 787–797.

    Article  CAS  PubMed  Google Scholar 

  • Miller LD, Lee KC, Mochly-Rosen D, Cartwright CA . (2004). RACK1 regulates Src-mediated Sam68 and p190RhoGAP signaling. Oncogene 23: 5682–5686.

    Article  CAS  PubMed  Google Scholar 

  • Nagy P, Bene L, Balazs M, Hyun WC, Lockett SJ, Chiang NY et al. (1998). EGF-induced redistribution of erbB2 on breast tumor cells: flow and image cytometric energy transfer measurements. Cytometry 32: 120–131.

    Article  CAS  PubMed  Google Scholar 

  • Nalefski EA, Falke JJ . (1996). The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5: 2375–2390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH . (2005). Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci 30: 688–697.

    Article  CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS . (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551–3567.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D . (1994). Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91: 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JS, Fletcher JA . (1998). The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells 16: 413–428.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger J . (2000). Cell signaling by receptor tyrosine kinases. Cell 103: 211–225.

    Article  CAS  PubMed  Google Scholar 

  • Schulze WX, Deng L, Mann M . (2005). Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol E-pub 25 May 2005.

  • Schulze WX, Mann M . (2004). A novel proteomic screen for peptide-protein interactions. J Biol Chem 279: 10756–10764.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Creutz CE . (2002). Copines: a ubiquitous family of Ca(2+)-dependent phospholipid-binding proteins. Cell Mol Life Sci 59: 1467–1477.

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Snyder SL, Creutz CE . (2003). Identification of targets for calcium signaling through the copine family of proteins. Characterization of a coiled-coil copine-binding motif. J Biol Chem 278: 10048–10054.

    Article  CAS  PubMed  Google Scholar 

  • Tomsig JL, Sohma H, Creutz CE . (2004). Calcium-dependent regulation of tumour necrosis factor-alpha receptor signalling by copine. Biochem J 378: 1089–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D et al. (2004). AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64: 4931–4941.

    Article  CAS  PubMed  Google Scholar 

  • White SL, Gharbi S, Bertani MF, Chan HL, Waterfield MD, Timms JF . (2004). Cellular responses to ErbB-2 overexpression in human mammary luminal epithelial cells: comparison of mRNA and protein expression. Br J Cancer 90: 173–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. (2004). Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 22: 2790–2799.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Elizabeth A Grimm for the polyclonal Copine-III antibody, Martin Spiess for the transferrin receptor antibody, Susanne Schenk for help in generating the Copine-III monoclonal antibody, Laurent Gelman for help with FRET, Michael Rebhan for some bioinformatic analyses and Gwen MacDonald and Julien Dey for helpful discussions. We also thank Daniel Hess and Florence Dalvai for help with establishing the ‘MRM buddy’. The work of CH, MV and MB was partially supported by TRANSFOG FP6 IP funding (LSHC-CT-2004-503438). The laboratories of NEH and JH are supported by the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N E Hynes.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrich, C., Keller, C., Boulay, A. et al. Copine-III interacts with ErbB2 and promotes tumor cell migration. Oncogene 29, 1598–1610 (2010). https://doi.org/10.1038/onc.2009.456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.456

Keywords

This article is cited by

Search

Quick links