Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epstein–Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b

Abstract

Epstein–Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is noted for its transforming potential. Yet, it also acts as a cytostatic and growth-relenting factor in Burkitt's lymphoma (BL) cells. The underlying molecular mechanisms of the growth inhibitory property of LMP1 have remained largely unknown. In this study, we show that LMP1 negatively regulates a major oncogene, TCL1, in diffuse large B-cell lymphoma (DLBCL) and BL cells. MicroRNA (miR) profiling of LMP1 transfectants showed that among others, miR-29b, is upregulated. LMP1 diminished TCL1 by inducing miR-29b through C-terminus activation region 1 (CTAR1) and CTAR2. miR-29b locked nucleic acid (LNA) antisense oligonucleotide transfection into LMP1-expressing cells reduced miR-29b expression and consequently reconstituted TCL1, suggesting that LMP1 negatively regulates TCL1 through miR-29b upregulation. The miR-29b increase by LMP1 was due to an increase in the cluster pri-miR-29b1-a transcription, derived from human chromosome 7. Using pharmacological inhibitors, we found that p38 mitogen-activated protein kinase-activating function of LMP1 is important for this effect. The ability of LMP1 to negatively regulate TCL1 through miR-29b might underlie its B-cell lymphoma growth antagonistic property. As LMP1 is also important for B-cell transformation, we suggest that the functional dichotomy of this viral protein may depend on a combination of levels of its expression, lineage and differentiation of the target cells and regulation of miRs, which then directs the outcome of the cellular response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Alexander WS, Adams JM, Cory S . (1989). Oncogene cooperation in lymphocyte transformation: malignant conversion of E mu-myc transgenic pre-B cells in vitro is enhanced by v-H-ras or v-raf but not v-abl. Mol Cell Biol 9: 67–73.

    Article  CAS  Google Scholar 

  • Amini RM, Berglund M, Rosenquist R, Von Heideman A, Lagercrantz S, Thunberg U et al. (2002). A novel B-cell line (U-2932) established from a patient with diffuse large B-cell lymphoma following Hodgkin lymphoma. Leuk Lymphoma 43: 2179–2189.

    Article  Google Scholar 

  • Baichwal VR, Sugden B . (1988). Transformation of Balb3T3 cells by BNLF-1 gene of Epstein–Barr virus. Oncogene 2: 461–467.

    CAS  PubMed  Google Scholar 

  • Bartel DP, Chen CZ . (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5: 396–400.

    Article  CAS  Google Scholar 

  • Bell AI, Groves K, Kelly GL, Croom-Carter D, Hui E, Chan AT et al. (2006). Analysis of Epstein–Barr virus latent gene expression in endemic Burkitt's lymphoma and nasopharyngeal carcinoma tumour cells by using quantitative real-time PCR assays. J Gen Virol 87: 2885–2890.

    Article  CAS  Google Scholar 

  • Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC . (2008). Expression of microRNA-146 suppresses NF-kB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27: 5643–5647.

    Article  CAS  Google Scholar 

  • Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. (2002). Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 99: 6955–6960.

    Article  CAS  Google Scholar 

  • Boccellato F, Anastasiadou E, Rosato P, Kempkes B, Frati L, Faggioni A et al. (2007). EBNA2 interferes with the germinal center phenotype by downregulating BCL6 and TCL1 in non-Hodgkin's lymphoma cells. J Virol 81: 2274–2282.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2007). Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 117: 2059–2066.

    Article  CAS  Google Scholar 

  • Cameron JE, Yin Q, Fewell C, Lacey M, McBride J, Wang X et al. (2008). The Epstein–Barr virus latent membrane protein 1 (LMP1) induces cellular microRNA-146a, a modulator of lymphocyte signaling pathways. J Virol 82: 1946–1958.

    Article  CAS  Google Scholar 

  • Cardinaud B, Moreilhon C, Marcet B, Robbe-Sermesant K, Lebrigand K, Mari B et al. (2009). miR-34b/miR-34c: a regulator of TCL1 expression in 11q-chronic lymphocytic leukaemia? Leukemia 23: 2174–2177.

    Article  CAS  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel DA, Arking D, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.

    Article  CAS  Google Scholar 

  • Cuomo L, Ramquist T, Trivedi P, Wang F, Klein G, Masucci MG . (1992). Expression of the Epstein–Barr virus (EBV)-encoded membrane protein LMP1 impairs the in vitro growth, clonability and tumorigenicity of an EBV-negative Burkitt lymphoma line. Int J Cancer 51: 949–955.

    Article  CAS  Google Scholar 

  • Dirmeier U, Hoffmann R, Kilger E, Schultheiss U, Briseño C, Gires O et al. (2005). Latent membrane protein 1 of Epstein–Barr virus coordinately regulates proliferation with control of apoptosis. Oncogene 24: 1711–1717.

    Article  CAS  Google Scholar 

  • Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W . (2003). Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein–Barr virus. Cancer Res 63: 2982–2989.

    CAS  Google Scholar 

  • Eliopoulos AG, Young LS . (2001). LMP1 structure and signal transduction. Semin Cancer Biol 11: 435–444.

    Article  CAS  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callagari E et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104: 15805–15810.

    Article  CAS  Google Scholar 

  • Floettmann JE, Rowe M . (1997). Epstein–Barr virus latent membrane protein-1 (LMP1) C-terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-kappaB activation. Oncogene 15: 1851–1858.

    Article  CAS  Google Scholar 

  • Floettmann JE, Ward K, Rickinson AB, Rowe M . (1996). Cytostatic effect of Epstein–Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Virology 223: 29–40.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R et al. (1991). Induction of bcl-2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65: 1107–1115.

    Article  CAS  Google Scholar 

  • Horenstein MG, Nador RG, Chadburn A, Hyjek EM, Inghirami G, Knowles DM et al. (1997). Epstein–Barr virus latent gene expression in primary effusion lymphomas containing Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. Blood 90: 1186–1191.

    CAS  PubMed  Google Scholar 

  • Hoyer KK, French SW, Turner DE, Nguyen MT, Renard M, Malone CS et al. (2002). Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma. Proc Natl Acad Sci USA 99: 14392–14397.

    Article  CAS  Google Scholar 

  • Hudson GS, Farrell PJ, Barrell BG . (1985). Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein–Barr virus B95-8. J Virol 53: 528–535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst DR, Edmonds MD, Scott GK, BEnz CC, Vaidya KS, Welch DR . (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res 69: 1279–1283.

    Article  CAS  Google Scholar 

  • Kawanishi M . (1997). Expression of Epstein–Barr virus latent membrane protein protects Jurkat T cells from apoptosis induced by serum deprivation. Virology 228: 244–250.

    Article  CAS  Google Scholar 

  • Kaye KM, Izumi KM, Kieff E . (1993). Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 90: 9150–9154.

    Article  CAS  Google Scholar 

  • Kiss C, Nishikawa J, Takada K, Trivedi P, Klein G, Szekely L . (2003). T cell leukemia I oncogene expression depends on the presence of Epstein–Barr virus in the virus-carrying Burkitt lymphoma lines. Proc Natl Acad Sci USA 100: 4813–4818.

    Article  CAS  Google Scholar 

  • Küppers R . (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5: 251–262.

    Article  Google Scholar 

  • Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM . (1992). The Epstein–Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem 267: 24157–24160.

    CAS  PubMed  Google Scholar 

  • Lam N, Sandberg ML, Sugden B . (2004). High physiological levels of LMP1 result in phosphorylation of eIF2 alpha in Epstein–Barr virus infected cells. J Virol 78: 1657–1664.

    Article  CAS  Google Scholar 

  • Lam N, Sugden B . (2003). LMP1, a viral relative of the TNF receptor family signals principally from intracellular compartments. EMBO J 22: 3027–3038.

    Article  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA . (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    Article  CAS  Google Scholar 

  • Lay JD, Chuang SE, Rowe M, Su IJ . (2003). Epstein–Barr virus latent membrane protein-1 mediates upregulation of tumor necrosis factor-alpha in EBV-infected T cells: implications for the pathogenesis of hemophagocytic syndrome. J Biomed Sci 10: 146–155.

    CAS  PubMed  Google Scholar 

  • Maruo S, Yang L, Takada K . (2001). Roles of Epstein–Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol 82: 2373–2383.

    Article  CAS  Google Scholar 

  • Motsch N, Pfuhl T, Mrazek J, Barth S, Grasser FA . (2007). Epstein–Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 4: 131–137.

    Article  CAS  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ . (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26: 6133–6140.

    Article  CAS  Google Scholar 

  • O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D . (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104: 1604–1609.

    Article  CAS  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  Google Scholar 

  • Ohno S, Migita S, Wiener F, Babonits M, Klein G, Mushinski JF et al. (1984). Chromosomal translocations activating myc sequences and transduction of v-abl are critical events in the rapid induction of plasmacytomas by pristane and Abelson virus. J Exp Med 159: 1762–1777.

    Article  CAS  Google Scholar 

  • Pajic A, Staege MS, Dudziak D, Schuhmacher M, Spitkovsky D, Eissner G et al. (2001). Antagonistic effects of c-myc and Epstein–Barr virus latent genes on the phenotype of human B cells. Int J Cancer 93: 810–816.

    Article  CAS  Google Scholar 

  • Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S et al. (2000). Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 97: 3028–3033.

    Article  CAS  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66: 11590–11593.

    Article  CAS  Google Scholar 

  • Raab-Traub N . (2001). Epstein–Barr virus in the pathogenesis of NPC. Semin Cancer Biol 12: 431–441.

    Article  Google Scholar 

  • Rahadiani N, Takakuwa T, Tresnasari K, Morii E, Aozasa K . (2008). Latent membrane protein-1 of Epstein–Barr virus induces the expression of B-cell integration cluster, a precursor form of microRNA-155, in B lymphoma cell lines. Biochem Biophys Res Commun 377: 579–583.

    Article  CAS  Google Scholar 

  • Rowe M, Rowe DT, Gregory CD, Young LS, Farrell PJ, Rupani H et al. (1987). Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6: 2743–2751.

    Article  CAS  Google Scholar 

  • Said JW, Hoyer KK, French SW, Rosenfelt L, Garcia-Lloret M, Koh PJ et al. (2001). TCL1 oncogene expression in B cell subsets from lymphoid hyperplasia and distinct classes of B cell lymphoma. Lab Invest 81: 555–564.

    Article  CAS  Google Scholar 

  • Sandberg ML, Kaykas A, Sugden B . (2000). Latent membrane protein 1 of Epstein–Barr virus inhibits as well as stimulates gene expression. J Virol 74: 9755–9761.

    Article  CAS  Google Scholar 

  • Schultheiss U, Puschner S, Kremmer E, Mak TW, Engelmann H, Hammerschmidt W et al. (2001). TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J 20: 5678–5691.

    Article  CAS  Google Scholar 

  • Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS . (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282: 1479–1486.

    Article  CAS  Google Scholar 

  • Shair KH, Bendt KM, Edwards RH, Bedford EC, Nielsen JN et al. (2007). EBV latent membrane protein 1 activates Akt, NFkappaB, and Stat3 in B cell lymphomas. PLoS Pathog 3: e166.

    Article  Google Scholar 

  • Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF . (1998). Epstein–Barr virus (EBV) in endemic Burkitt's lymphoma: molecular analysis of primary tumor tissue. Blood 91: 1373–1381.

    CAS  Google Scholar 

  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B et al. (2007). Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179: 5082–5089.

    Article  CAS  Google Scholar 

  • Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS . (2002). The Epstein–Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci USA 99: 10084–10089.

    Article  CAS  Google Scholar 

  • Virgilio L, Isobe M, Narducci MG, Carotenuto P, Camerini B, Kurosawa N et al. (1993). Chromosome walking on the TCL1 locus involved in T-cell neoplasia. Proc Natl Acad Sci USA 90: 9275–9279.

    Article  CAS  Google Scholar 

  • Wang D, Liebowitz D, Kieff E . (1985). An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43: 831–840.

    Article  CAS  Google Scholar 

  • Wang D, Liebowitz D, Wang F, Gregory C, Rickinson A, Larson R et al. 1988)). Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol 62: 4173–4184.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Rowe M, Lundgren E . (1996). Expression of the Epstein Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. Cancer Res 56: 4610–4613.

    CAS  PubMed  Google Scholar 

  • Yin Q, Wang X, McBride J, Fewell C, Flemington EK . (2008). B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. J Biol Chem 283: 2654–2662.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V Licursi, V Del Vescovo and Dr R Negri's group members for help with microarray scanning facility and statistical analysis. We thank Dr Martin Rowe (Birmingham University, UK) for providing mutant LMP1 plasmids and comments. Dr Michael Teitell (UCLA, Los Angeles) and Dr Stefanie Gofflot (University of Liege, Belgium) are acknowledged for supplying TCL1 promoter reporter constructs and SUDH4 DLBCL cell line, respectively. This work was supported by grants from MIUR and Associazione Italiana per la ricerca sul Cancro (AIRC), progetto strategico ISS 9ACF/1 of Ministero della Salute, Pasteur Cenci-Bolognetti Foundation, Fondazione Italiana per la sclerosi multipla (FISM), Sixth Research Framework Programme of the European Union, Project RIGHT (LSHB-CT-2004 005276) and SIROCCO (037900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Trivedi.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasiadou, E., Boccellato, F., Vincenti, S. et al. Epstein–Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene 29, 1316–1328 (2010). https://doi.org/10.1038/onc.2009.439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.439

Keywords

This article is cited by

Search

Quick links