Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mesenchymal–epithelial transition in epithelial response to injury: the role of Foxc2

Abstract

Overexpression of the forkhead family transcription factor Foxc2 has been shown to activate epithelial–mesenchymal transition (EMT) and correlate with tumor metastasis. In this study, we show that both mRNA and protein levels of Foxc2 increase 1 day after kidney ischemia/reperfusion in sublethally injured tubular cells and that the protein is located in the cytoplasm rather than the nucleus of these cells. in vitro studies of cultured tubular cells confirm the cytoplasmic location of Foxc2 and show that increased cytoplasmic expression of Foxc2 correlates with epithelial differentiation rather than dedifferentiation. Silencing of Foxc2 by RNAi in these cells led to EMT and increased cell migration. In contrast, Foxc2 is found in both the nucleus and cytoplasm of cultured fibroblasts, with RNAi leading to increased expression of epithelial markers and impaired cell migration. Consistent with a subcellular localization dependence of Foxc2 function, overexpression of Foxc2 in renal epithelial cells resulted in de novo nuclear expression of the protein and promotion of a mesenchymal/fibroblast phenotype. These results suggest that Foxc2 may have regulatory functions independent of its nuclear transcriptional activity and that upregulation of endogenous Foxc2 in the cytoplasm of injured tubular cells activates epithelial cell redifferentiation rather than dedifferentiation during organ repair.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arden KC . (2006). Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol 41: 709–717.

    Article  CAS  PubMed  Google Scholar 

  • Bard JB, Lam MS, Aitken S . (2008). A bioinformatics approach for identifying candidate transcriptional regulators of mesenchyme-to-epithelium transitions in mouse embryos. Dev Dyn 237: 2748–2754.

    Article  CAS  PubMed  Google Scholar 

  • Berry FB, Tamimi Y, Carle MV, Lehmann OJ, Walter MA . (2005). The establishment of a predictive mutational model of the forkhead domain through the analyses of FOXC2 missense mutations identified in patients with hereditary lymphedema with distichiasis. Hum Mol Genet 14: 2619–2627.

    Article  CAS  PubMed  Google Scholar 

  • Birkenkamp KU, Coffer PJ . (2003). Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31: 292–297.

    Article  CAS  PubMed  Google Scholar 

  • Bois PR, Grosveld GC . (2003). FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J 22: 1147–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonventre JV . (2003). Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14 (Suppl 1): S55–S61.

    Article  PubMed  Google Scholar 

  • Calnan DR, Brunet A . (2008). The FoxO code. Oncogene 27: 2276–2288.

    Article  CAS  PubMed  Google Scholar 

  • Coffer PJ, Burgering BM . (2004). Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 4: 889–899.

    Article  CAS  PubMed  Google Scholar 

  • Duffield JS, Bonventre JV . (2005). Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 68: 1956–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita H, Kang M, Eren M, Gleaves LA, Vaughan DE, Kume T . (2006). Foxc2 is a common mediator of insulin and transforming growth factor beta signaling to regulate plasminogen activator inhibitor type I gene expression. Circ Res 98: 626–634.

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A . (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410–7425.

    Article  CAS  PubMed  Google Scholar 

  • Gronning LM, Cederberg A, Miura N, Enerback S, Tasken K . (2002). Insulin and TNF alpha induce expression of the forkhead transcription factor gene Foxc2 in 3T3-L1 adipocytes via PI3K and ERK 1/2-dependent pathways. Mol Endocrinol 16: 873–883.

    CAS  PubMed  Google Scholar 

  • Hayashi H, Kume T . (2008). Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem Biophys Res Commun 367: 584–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Sano H, Seo S, Kume T . (2008). The Foxc2 transcription factor regulates angiogenesis via induction of integrin beta3 expression. J Biol Chem 283: 23791–23800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibe S, Cantley LG . (2008). Epithelial-mesenchymal-epithelial cycling in kidney repair. Curr Opin Nephrol Hypertens 17: 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Ishibe S, Haydu JE, Togawa A, Marlier A, Cantley LG . (2006). Cell confluence regulates hepatocyte growth factor-stimulated cell morphogenesis in a beta-catenin-dependent manner. Mol Cell Biol 26: 9232–9243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG . (2003). Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112: 42–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R, Neilson EG . (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112: 1776–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karihaloo A, Karumanchi SA, Cantley WL, Venkatesha S, Cantley LG, Kale S . (2005). Vascular endothelial growth factor induces branching morphogenesis/tubulogenesis in renal epithelial cells in a neuropilin-dependent fashion. Mol Cell Biol 25: 7441–7448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Moran A, Igarashi P . (2005). Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115: 1756–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y . (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N et al. (2007). Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA 104: 10069–10074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myatt SS, Lam EW . (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7: 847–859.

    Article  CAS  PubMed  Google Scholar 

  • Obsil T, Obsilova V . (2008). Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27: 2263–2275.

    Article  CAS  PubMed  Google Scholar 

  • Schafer JA, Watkins ML, Li L, Herter P, Haxelmans S, Schlatter E . (1997). A simplified method for isolation of large numbers of defined nephron segments. Am J Physiol Renal Physiol 273: F650–F657.

    Article  CAS  Google Scholar 

  • Schwab TS, Madison BB, Grauman AR, Feldman EL . (2005). Insulin-like growth factor-I induces the phosphorylation and nuclear exclusion of forkhead transcription factors in human neuroblastoma cells. Apoptosis 10: 831–840.

    Article  CAS  PubMed  Google Scholar 

  • Sinha D, Wang Z, Price VR, Schwartz JH, Lieberthal W . (2003). Chemical anoxia of tubular cells induces activation of c-Src and its translocation to the zonula adherens. Am J Physiol Renal Physiol 284: F488–F497.

    Article  CAS  PubMed  Google Scholar 

  • Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE et al. (1995). Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130: 393–405.

    Article  CAS  PubMed  Google Scholar 

  • Wallin A, Zhang G, Jones TW, Jaken S, Stevens JL . (1992). Mechanism of the nephrogenic repair response. Studies on proliferation and vimentin expression after 35S-1,2-dichlorovinyl-L-cysteine nephrotoxicity in vivo and in cultured proximal tubule epithelial cells. Lab Invest 66: 474–484.

    CAS  PubMed  Google Scholar 

  • Witzgall R, Brown D, Schwarz C, Bonventre JV . (1994). Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93: 2175–2188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Massague J . (2004). Nucleocytoplasmic shuttling of signal transducers. Nat Rev Mol Cell Biol 5: 209–219.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH awards to LGC (DK65109 and DK66216). We thank Dr Robert Weinberg for the generous gift of the plasmids for expression of Foxc2, Insa Schmidt for providing the PTEC cells and Dr Jiankan Guo for his experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Cantley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hader, C., Marlier, A. & Cantley, L. Mesenchymal–epithelial transition in epithelial response to injury: the role of Foxc2. Oncogene 29, 1031–1040 (2010). https://doi.org/10.1038/onc.2009.397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.397

Keywords

This article is cited by

Search

Quick links