Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses

Abstract

Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca++ stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2α. Since TCTP has been characterized as an antiapoptotic and Ca++-binding protein, we asked whether it is involved in protecting cells from Ca++-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2α phosphorylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barber GN . (2005). The dsRNA-dependent protein kinase, PKR and cell death. Cell Death Differ 12: 563–570.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Asouli Y, Banai Y, Pel-Or Y, Shir A, Kaempfer R . (2002). Human interferon-gamma mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell 108: 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz O, Jost R, Pollmann S, Masle J . (2008). Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20: 3430–3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bommer U-A, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG et al. (2002). The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA (a publication of the RNA Society) 8: 478–496.

    Article  CAS  Google Scholar 

  • Bommer U-A, Thiele B-J . (2004). The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36: 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Brostrom CO, Brostrom MA . (1998). Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58: 79–125.

    Article  CAS  PubMed  Google Scholar 

  • Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N et al. (2003). Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci USA 100: 13892–13897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SH, Wu P-S, Chou C-H, Yan Y-T, Liu H, Weng S-Y et al. (2007). A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18: 2525–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Lin-Shiau SY, Lin JK . (1998). Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177: 324–333.

    Article  CAS  PubMed  Google Scholar 

  • Constantinou C, Clemens MJ . (2007). Regulation of translation factors eIF4GI and 4E-BP1 during recovery of protein synthesis from inhibition by p53. Cell Death Differ 14: 576–585.

    Article  CAS  PubMed  Google Scholar 

  • Davis S, Watson JC . (1996). in vitro activation of the interferon-induced, double-stranded RNA-dependent protein kinase PKR by RNA from the 3′ untranslated regions of human alpha-tropomyosin. Proc Natl Acad Sci USA 93: 508–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efferth T . (2005). Mechanistic perspectives for 1,2,4-trioxanes in anticancer therapy. Drug Resist Updat 8: 85–97.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Liu D, Yao H, Wang J . (2007). Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Arch Biochem Biophys 467: 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Fritsch RM, Schneider G, Saur D, Scheibel M, Schmid RM . (2007). Translational repression of MCL-1 couples stress-induced eIF2 alpha phosphorylation to mitochondrial apoptosis initiation. J Biol Chem 282: 22551–22562.

    Article  CAS  PubMed  Google Scholar 

  • Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA . (1999). The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112: 1257–1271.

    CAS  PubMed  Google Scholar 

  • Garcia MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C et al. (2006). Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70: 1032–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia MA, Meurs EF, Esteban M . (2007). The dsRNA protein kinase PKR: virus and cell control. Biochimie 89: 799–811.

    Article  CAS  PubMed  Google Scholar 

  • Gnanasekar M, Ramaswamy K . (2007). Translationally controlled tumor protein of Brugia malayi functions as an antioxidant protein. Parasitol Res 101: 1533–1540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gnanasekar M, Thirugnanam S, Zheng G, Chen A, Ramaswamy K . (2009). Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. Int J Oncol 34: 1241–1246.

    CAS  PubMed  Google Scholar 

  • Graidist P, Yazawa M, Tonganunt M, Nakatomi A, Lin CC, Chang JY et al. (2007). Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem J 408: 181–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M et al. (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6: 1099–1108.

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D . (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Hsu Y-C, Chern JJ, Cai Y, Liu M, Choi K-W . (2007). Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445: 785–788.

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Yang M, May WS . (1999). RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 274: 15427–15432.

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Kim M, Kim M-J, Kim J, Moon J, Lim J-S et al. (2004). Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na, K–ATPase alpha subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279: 49868–49875.

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Koo KH, Kim YH, Sohn J, Park YG . (2008a). Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Exp Mol Med 40: 709–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M-J, Kwon J-S, Suh SH, Suh J-K, Jung J, Lee S-N et al. (2008b). Transgenic overexpression of translationally controlled tumor protein induces systemic hypertension via repression of Na+, K+–ATPase. J Mol Cell Cardiol 44: 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Jung Y, Lee K, Kim C . (2000). Identification of the calcium binding sites in translationally controlled tumor protein. Arch Pharm Res 23: 633–636.

    Article  CAS  PubMed  Google Scholar 

  • Koziol MJ, Garrett N, Gurdon JB . (2007). Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol 17: 801–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ES, Yoon CH, Kim YS, Bae YS . (2007). The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis. FEBS Lett 581: 4325–4332.

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhang D, Fujise K . (2001). Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276: 47542–47549.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Peng H-W, Cheng Y-S, Yuan HS, Yang-Yen H-F . (2005). Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25: 3117–3126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Han AP, Chen JJ . (2001). Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 21: 7971–7980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Geng Y, Xu W, Wu Y, He F, Shu W et al. (2009). The role of translationally controlled tumor protein in tumor growth and metastasis of colon adenocarcinoma cells. J Proteome Res (e-pub ahead of print).

  • Onuki R, Bando Y, Suyama E, Katayama T, Kawasaki H, Baba T et al. (2004). An RNA-dependent protein kinase is involved in tunicamycin-induced apoptosis and Alzheimer’s disease. EMBO J 23: 959–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel CV, Handy I, Goldsmith T, Patel RC . (2000). PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem 275: 37993–37998.

    Article  CAS  PubMed  Google Scholar 

  • Prostko CR, Dholakia JN, Brostrom MA, Brostrom CO . (1995). Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J Biol Chem 270: 6211–6215.

    Article  CAS  PubMed  Google Scholar 

  • Rehmann H, Bruning M, Berghaus C, Schwarten M, Kohler K, Stocker H et al. (2008). Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 582: 3005–3010.

    Article  CAS  PubMed  Google Scholar 

  • Scheuner D, Patel R, Wang F, Lee K, Kumar K, Wu J et al. (2006). Double-stranded RNA-dependent protein kinase phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 mediates apoptosis. J Biol Chem 281: 21458–21468.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Fahling M, Nafz B, Skalweit A, Thiele B-J . (2007). Induction of translationally controlled tumor protein (TCTP) by transcriptional and post-transcriptional mechanisms. FEBS J 274: 5416–5424.

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Fowlkes V, Handy I, Patel CV, Patel RC . (2009). Essential role of PACT-mediated PKR activation in tunicamycin-induced apoptosis. J Mol Biol 385: 457–468.

    Article  CAS  PubMed  Google Scholar 

  • Slaby O, Sobkova K, Svoboda M, Garajova I, Fabian P, Hrstka R et al. (2009). Significant overexpression of Hsp110 gene during colorectal cancer progression. Oncol Rep 21: 1235–1241.

    Article  CAS  PubMed  Google Scholar 

  • Spector D, Goldman R, Leinwand L (eds). (1998). Cells: a Laboratory Manual, Vol. 1, pp Cold Spring Harbor Laboratory Press: New York; 15.13, 16.13, 16.14.

    Google Scholar 

  • Srivastava SP, Davies MV, Kaufman RJ . (1995). Calcium depletion from the endoplasmic reticulum activates the double-stranded RNA-dependent protein kinase (PKR) to inhibit protein synthesis. J Biol Chem 270: 16619–16624.

    Article  CAS  PubMed  Google Scholar 

  • Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G et al. (2008). TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15: 1211–1220.

    Article  CAS  PubMed  Google Scholar 

  • Tani T, Shimada H, Kato Y, Tsunoda Y . (2007). Bovine oocytes with the potential to reprogram somatic cell nuclei have a unique 23-kDa protein, phosphorylated transcriptionally controlled tumor protein (TCTP). Cloning Stem Cells 9: 267–280.

    Article  CAS  PubMed  Google Scholar 

  • Telerman A, Amson R . (2009). The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat Rev Cancer 9: 206–216.

    Article  CAS  PubMed  Google Scholar 

  • Tuynder M, Fiucci G, Prieur S, Lespagnol A, Geant A, Beaucourt S et al. (2004). Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci USA 101: 15364–15369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R et al. (2002). Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA 99: 14976–14981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Sande WW, Janse DJ, Hira V, Goedhart H, van der Zee R, Ahmed AO et al. (2006). Translationally controlled tumor protein from Madurella mycetomatis, a marker for tumorous mycetoma progression. J Immunol 177: 1997–2005.

    Article  CAS  PubMed  Google Scholar 

  • Vonakis BM, MacGlashan Jr DW, Vilarino N, Langdon JM, Scott RS, MacDonald SM . (2008). Distinct characteristics of signal transduction events by histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)-induced priming and activation of human basophils. Blood 111: 1789–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ et al. (2008). Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 283: 30482–30492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z, Yan Y, Song J, Fang P, Yin Y, Yang Y et al. (2008). Expression of TCTP antisense in CD25(high) regulatory T cells aggravates cuff-injured vascular inflammation. Atherosclerosis 203: 401–408.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu A, Bellamy AR, Taylor JA . (1999). Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 342 (Pt 3): 683–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Bailly-Maitre B, Reed JC . (2005). Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115: 2656–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M et al. (2005). An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24: 4778–4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon CH, Lee ES, Lim DS, Bae YS . (2009). PKR, a p53 target gene, plays a crucial role in the tumour-suppressor function of p53. Proc Natl Acad Sci USA 106: 7852–7857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K . (2002). Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277: 37430–37438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Charles Weissmann, Randy Kaufman and Donalyn Scheuner for cell lines; Mr Bill Newman for help in performing the initial fluorescence-activated cell sorting analysis experiments; Dr Constantina Constantinou for providing extracts from mouse erythroleukaemia cells and members of Dr Guy Whitley's laboratory for help with the cell-video microscopy facilities. This work was supported by The Wellcome Trust (UAB and MJC), the Cancer Prevention Research Trust (UAB) and the Association for International Cancer Research (MJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U-A Bommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bommer, UA., Heng, C., Perrin, A. et al. Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 29, 763–773 (2010). https://doi.org/10.1038/onc.2009.380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.380

Keywords

This article is cited by

Search

Quick links