Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A common gain of function of p53 cancer mutants in inducing genetic instability

Abstract

The critical tumor suppressor p53 is mutated in over half of all human cancers. The majority of p53 cancer mutations are missense mutations, which can be classified into contact mutations that directly disrupt the DNA-binding of p53 but have modest impact on p53 conformation and structural mutations that greatly disrupt p53 conformation. Many p53 cancer mutants, including the hot spot mutations (R175H, R248W and R273H), not only lose p53-dependent tumor-suppressor activities, but also acquire new oncogenic activities to promote cancer. Therefore, it is critical to elucidate the gain of oncogenic function of p53 cancer mutants. Using humanized p53-mutant knock-in mouse models, we have identified a gain of oncogenic function shared by the most common p53 contact mutants (R273H and R248W) and structural mutant (R175H). This gain of function inactivates Mre11/ATM-dependent DNA damage responses, leading to chromosomal translocation and defective G2/M checkpoint. Considering the critical roles of ATM in maintaining genetic stability and therapeutic responses to many cancer treatments, the identification of this common gain of function of p53 cancer mutants will have important implication on the drug resistance of a significant portion of human cancers that express either the contact or structural p53 cancer mutants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M et al. (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114: 359–370.

    Article  CAS  PubMed  Google Scholar 

  • Carbone R, Pearson M, Minucci S, Pelicci PG . (2002). PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21: 1633–1640.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Herr D, Chun J, Xu Y . (2006). Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 25: 2615–2622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Hainaut P, Hollstein M . (2000). p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77: 81–137.

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Bronson RT, Xu Y . (2002). Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21: 1447–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko LJ, Prives C . (1996). p53: puzzle and paradigm. Genes Dev 10: 1054–1072.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF . (2007). ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26: 7749–7758.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Prives C . (2007). Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26: 2220–2225.

    Article  CAS  PubMed  Google Scholar 

  • Lista F, Bertness V, Guidos CJ, Danska JS, Kirsch IR . (1997). The absolute number of trans-rearrangements between the TCRG and TCRB loci is predictive of lymphoma risk: a severe combined immune deficiency (SCID) murine model. Cancer Res 57: 4408–4413.

    CAS  PubMed  Google Scholar 

  • Luo JL, Yang Q, Tong WM, Hergenhahn M, Wang ZQ, Hollstein M . (2001). Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20: 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  • Song H, Hollstein M, Xu Y . (2007). p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9: 573–580.

    Article  CAS  PubMed  Google Scholar 

  • Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y . (2006). DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 6: 261–270.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr M Hollstein for the HUPKI construct. This work was supported by Grants from the NIH (R01 CA94254) and DOD Breast Cancer Research Program (W81XWH-08-1-0381) to YX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Xu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Song, H. & Xu, Y. A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29, 949–956 (2010). https://doi.org/10.1038/onc.2009.376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.376

Keywords

This article is cited by

Search

Quick links