Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BAG-1 overexpression attenuates luminal apoptosis in MCF-10A mammary epithelial cells through enhanced RAF-1 activation

Abstract

Although the multi-functional, prosurvival protein, Bcl-2-associated anthanogene 1 (BAG-1) is frequently overexpressed in breast cancers, its role in the development or maintenance of the malignant state remains unclear. Here, we have used the established MCF-10A 3-dimensional (3D) model of mammary morphogenesis as a biologically relevant system to determine how BAG-1 expression may influence the development of breast cancer. When cultured in 3D, MCF-10A cells undergo a highly regulated morphogenic program leading to the development of polarized acinar structures containing a central, hollow lumen formed, in part, through the induction of BIM-dependent apoptosis. BAG-1 overexpression resulted in an attenuation of this normal apoptotic program characterized by a significantly increased number of acini with filled lumens—a phenotype commonly observed in ductal carcinoma in situ. BAG-1's effects were associated with an activation of RAF-1—a known binding partner of BAG-1, enhanced signaling through the MAP kinase pathway and a decrease in BIM expression. Reversal of the BAG-1-associated survival phenotype by the mitogen-activated kinase/ERK kinase inhibitor, U0126, implicates the RAF-1–extracellular signal-regulated kinase signaling pathway as a major mediator of BAG-1's effects in this model. As BAG-1 expression is often elevated in preinvasive breast cancers, these findings support a possible role for BAG-1 as an early contributor to the malignant process in the breast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BAG-1:

Bcl-2-associated anthanogene

ERK:

extracellular signal regulated kinase

MEK:

mitogen-activated kinase/ERK kinase

ER:

estrogen receptor

DCIS:

ductal carcinoma in situ

3D:

three-dimensional

DAPI:

4′,6-diamidino-2-phenylindole

References

  • Arhel NJ, Packham G, Townsend PA, Collard TJ, H-Zadeh AM, Sharp A et al. (2003). The retinoblastoma protein interacts with Bag-1 in human colonic adenoma and carcinoma derived cell lines. Int J Cancer 106: 364–371.

    Article  CAS  PubMed  Google Scholar 

  • Avruch J, Zhang XF, Kyriakis JM . (1994). Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci 19: 279–283.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV, Wu GS, Omura S, el-Deiry WS . (1996). Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227: 564–569.

    Article  CAS  PubMed  Google Scholar 

  • Brimmell M, Burns JS, Munson P, McDonald L, O′Hare MJ, Lakhani SR et al. (1999). High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers. Brit J Cancer 81: 1042–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummer T, Schramek D, Hayes VM, Bennett HL, Caldon CE, Musgrove EA et al. (2006). Increased proliferation and altered growth factor dependence of human mammary epithelial cells overexpressing the Gab2 docking protein. J Biol Chem 281: 626–637.

    Article  CAS  PubMed  Google Scholar 

  • Caldon CE, Swarbrick A, Lee CS, Sutherland RL, Musgrove EA . (2008). The helix-loop-helix protein Id1 requires cyclin D1 to promote the proliferation of mammary epithelial cell acini. Cancer Res 68: 3026–3036.

    Article  CAS  PubMed  Google Scholar 

  • Cutress RI, Townsend PA, Sharp A, Maison A, Wood L, Lee RS et al. (2003). The nuclear BAG-1 isoform, BAG-1L, enhances oestrogen-dependent transcription. Oncogene 22: 4973–4982.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Brugge J . (2005). Modelling glandular epithelial cancers in three-dimensional cultures. Nature Reviews Cancer 5: 675–688.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge J . (2002). The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge J . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  • Elliott E, Ginzburg I . (2009). BAG-1 is preferentially expressed in neuronal precursor cells of the adult mouse brain and regulates their proliferation in vitro. FEBS Lett 583: 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Froesch BA, Takayama S, Reed JC . (1998). BAG-1 L protein enhances androgen receptor function. J Biol Chem 273: 11660–11666.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 200: 57–70.

    Article  Google Scholar 

  • Harris JR, Lippman ME, Morrow M, Osborne CK . (1999). Diseases of the breast. Lippincott Williams and Wilkins: Philadelphia.

    Google Scholar 

  • Höhfeld J . (1998). Regulation of the heat shock conjugate Hsc70 in the mammalian cell: the characterization of the anti-apoptotic protein BAG-1 provides novel insights. Biol Chem 379: 269–274.

    PubMed  Google Scholar 

  • Kolch W . (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351: 289–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoh M, Knee DA, Takayama S, Reed JC . (2002). Bag1 proteins regulate growth and survival of ZR-75-1 human breast cancer cells. Cancer Res 62: 1904–1909.

    CAS  PubMed  Google Scholar 

  • Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ . (2003). Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 278: 18811–18816.

    Article  CAS  PubMed  Google Scholar 

  • Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G et al. (2003). Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22: 6785–6793.

    Article  CAS  PubMed  Google Scholar 

  • Mailleux AA, Overholtzer M, Brugge JS . (2008). Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell cycle 7: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Mailleux AA, Overholtzer M, Schmelzle T, Bouillet P, Strasser A, Brugge JS . (2007). BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 12: 221–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meller R, Cameron JA, Torrey DJ, Clayton CE, Ordonez AN, Henshall DC et al. (2006). Rapid degradation of Bim by the ubiquitin–proteasome pathway mediates short-term ischemic tolerance in cultured neurons. J Biol Chem 281: 7429–7436.

    Article  CAS  PubMed  Google Scholar 

  • Millar EKA, Anderson LR, McNeil CM, O′Toole SA, Pinese M, Crea P et al. (2008). BAG-1 predicts patient outcome and tamoxifen responsiveness in ER-positive invasive ductal carcinoma of the breast. Br J Cancer 100: 123–133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mueller H, Flury N, Eppenberger-Castori S, Kueng W, David F, Eppenberger U . (2000). Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer 89: 384–388.

    Article  CAS  PubMed  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadler Y, Camp RL, Giltnane JM, Moeder C, Rimm DL, Kluger HM et al. (2008). Expression patterns and prognostic value of Bag-1 and Bcl-2 in breast cancer. Breast Cancer Res 10: R35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Packham G, Brimmell M, Cleveland JL . (1997). Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem J 328: 807–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reginato MJ, Mills KR, Becker EBE, Lynch DK, Bonni A, Muthuswamy SK et al. (2005). Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol Cell Biol 25: 4591–4601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salh B, Marotta A, Matthewson C, Ahluwalia M, Flint J, Owen D et al. (1999). Investigation of the Mek–MAP kinase–Rsk pathway in human breast cancer. Anticancer Res 19: 731–740.

    CAS  PubMed  Google Scholar 

  • Sharp A, Crabb SJ, Townsend PA, Cutress RI, Brimmell M, Wang XH et al. (2004). BAG-1 in carcinogenesis. Expert Rev Mol Med 6: 1–15.

    Article  PubMed  Google Scholar 

  • Sivaraman VS, Wang H, Nuovo GJ, Malbon CC . (1997). Hyperexpression of mitogen-activated protein kinase in human breast cancer. J Clin Invest 99: 1478–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Takeda M, Morimoto RI . (2001). Bag1-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol 3: 276–282.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland RL, Watts CK, Lee CSL, Musgrove EA . (1999). Breast Cancer. In: Masters JRW and Palsson B (eds). Human Cell Culture. Kluwer: Dordrecht, pp 79–106.

    Google Scholar 

  • Takayama S, Bimston DN, Matsuzawa S, Freeman BC, Aime-Sempe C, Xie Z et al. (1997). BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16: 4887–4896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Krajewski S, Krajewska M, Kitada S, Zapata JM, Kochel K et al. (1998). Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res 58: 3116–3131.

    CAS  PubMed  Google Scholar 

  • Takayama S, Sato T, Krajewski S, Kochel K, Irie S, Millan JA et al. (1995). Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G . (2003a). BAG-1 prevents stress-induced long-term growth inhibition in breast cancer cells via a chaperone-dependent pathway. Cancer Res 63: 4150–4157.

    CAS  PubMed  Google Scholar 

  • Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G . (2003b). BAG-1: a multifunctional regulator of cell growth and survival. Biochim Biophys Acta 1603: 83–98.

    CAS  PubMed  Google Scholar 

  • Townsend PA, Dublin E, Hart IR, Kao R-H, Hanby AM, Cutress RI et al. (2002). BAG-1 expression in human breast cancer: interrelationship between BAG-1 RNA, protein, HSC70 expression and clinico-pathological data. J Pathol 197: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Turner BC, Krajewski S, Krajewska M, Takayama S, Gumbs AA, Carter D et al. (2001). BAG-1: a novel biomarker predicting long-term survival in early stage-breast cancer. J Clin Oncol 19: 992–1000.

    Article  CAS  PubMed  Google Scholar 

  • Wang H-G, Takayama S, Rapp UR, Reed JC . (1996). Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci USA 93: 7063–7068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Ghosh RN, Chellappan SP . (1998). Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol 18: 7487–7498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-H, O′Connor D, Brimmell M, Packham G . (2009). The BAG-1 cochaperone is a negative regulator of p73-dependent transcription. Brit J Cancer 100: 1347–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XL, Hao Y, Ding Z, Pater A, Tang S-C . (1999). Differential expression of antiapoptotic gene BAG-1 in human breast normal and cancer cell lines and tissues. Clin Cancer Res 5: 1816–1822.

    CAS  PubMed  Google Scholar 

  • Zeiner M, Gehring U . (1995). A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning. Proc Natl Acad Sci USA 92: 11465–11469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of Drs Will Hughes and James Burchfield (Garvan Institute) with confocal microscopy, and Professor Graham Packham (University of Southampton) for useful discussions. This study was supported by Cancer Institute NSW Postgraduate Scholarship and Australian Postgraduate Award (LRA); Cancer Institute NSW Career Development and Support Fellowship (AJB); National Health and Medical Research Council (Australia) Program Grant 535903; RT Hall Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Butt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, L., Sutherland, R. & Butt, A. BAG-1 overexpression attenuates luminal apoptosis in MCF-10A mammary epithelial cells through enhanced RAF-1 activation. Oncogene 29, 527–538 (2010). https://doi.org/10.1038/onc.2009.362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.362

Keywords

This article is cited by

Search

Quick links