Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Roles of PKC isoforms in the induction of apoptosis elicited by aberrant Ras

Abstract

Emerging evidence indicates that suppression of protein kinase C (PKC) renders the susceptibility of cells expressing mutated ras to apoptosis. Although the effort has been made, the underlying molecular mechanisms are not fully understood. In this study, using small hairpin RNAs (shRNAs) or PKC inhibitor, we show that the concurrent suppression of PKC-α and β induces cells ectopically expressing v-ras to undergo apoptosis. In this apoptotic process, PKC-δ is upregulated and translocated from the cytosol to the nucleus. The activated PKC-δ associates with and phosphorylates p73 to initiate apoptosis. In this apoptotic process, Akt seems to be downstream of oncogenic Ras. Moreover, overexpression of PKC-δ, without co-suppression of PKC-α and β, is not apoptotic to the cells, suggesting that PKC-δ and PKC-α/β function oppositely to facilitate cells harboring v-ras to survive. Thus, our study shows that PKC-α and β are necessary for sustaining the homeostasis in cells containing a hyperactive Ras. The abrogation of these two isoforms switches on the p73-regulated apoptotic machinery through the activation of PKC-δ.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aaltonen V, Koivunen J, Laato M, Peltonen J . (2007). PKC inhibitor GO6976 induces mitosis and enhances doxorubicin-paclitaxel cytotoxicity in urinary bladder carcinoma cells. Cancer Lett 253: 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Agami R, Blandino G, Oren M, Shaul Y . (1999). Interaction of c-Abl and p73 and their collaboration to induce apoptosis. Nature 399: 809–813.

    CAS  PubMed  Google Scholar 

  • Atten MJ, Godoy-Romero E, Attar BM, Milson T, Zopel M, Holian O . (2005). Resveratrol regulates cellular PKCα and δ to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs 23: 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Barbacid M . (1987). Ras genes. Annu Rev Biochem 56: 779–827.

    Article  CAS  PubMed  Google Scholar 

  • Braun MU, Mochly-Rosen D . (2003). Opposing effects of delta- and zeta-protein kinase C isozymes on cardiac fibroblast proliferation: use of isozyme-selective inhibitors. J Mol Cell Cardiol 35: 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Brodie C, Blumberg PM . (2003). Regulation of cell apoptosis by protein kinase c delta. Apoptosis 8: 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Chau BN, Chen TT, Wan YY, Degregori J, Wang JY . (2004). Tumor necrosis factor alpha-induced apoptosis requires p73 and c-ABL activation downstream of RB degradation. Mol Cell Biol 24: 4438–4447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Liou J, Forman LW, Faller DV . (1998a). Correlation of genetic instability and apoptosis in the presence of oncogenic Ki-ras. Cell Death Differ 5: 984–995.

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Liou J, Forman LW, Faller DV . (1998b). Differential regulation of discrete apoptotic pathways by Ras. J Biol Chem 273: 16700–16709.

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Juo P, Liou J, Li CQ, Yu Q, Blenis J et al. (2001). The recruitment of Fas-associated death domain/caspase 8 in Ras-induced apoptosis. Cell Growth Differe 12: 297–306.

    Google Scholar 

  • Costanzo A, Merto P, Pediconi N, Fulco M, Sartorelli V, Cole PA et al. (2002). DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9: 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Kornblau SM, Ruvolo PP, May WS . (2001). Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance. J Natl Cancer Inst Monogr 28: 30–37.

    Google Scholar 

  • Denning MF, Dlugosz AA, Threadgill DW, Magnuson T, Yuspa SH . (1996). Activation of the epidermal growth factor receptor signal transduction pathway stimulates tyrosine phosphorylation of protein kinase C delta. J Biol Chem 271: 5325–5331.

    Article  CAS  PubMed  Google Scholar 

  • DeVries-Seimon TA, Neville MC, Reyland ME . (2002). Nuclear import of PKCδ is required for apoptosis: identification of a novel nuclear import sequence. EMBO J 21: 6050–6060.

    Article  Google Scholar 

  • DeVries-Seimon TA, Ohm AM, Humphries MJ, Reyland ME . (2007). Induction of apoptosis is driven by nuclear retention of protein kinase Cδ. J Biol Chem 282: 22307–22314.

    Article  CAS  PubMed  Google Scholar 

  • Eitel K, Staiger H, Rieger J, Mischak H, Brandhorst H, Brendel MD et al. (2003). Protein kinase Cδ activation and translocation to the nucleus are requited for fatty acid-induced apoptosis of insulin-secreting cells. Diabetes 52: 991–997.

    Article  CAS  PubMed  Google Scholar 

  • Emoto Y, Manome Y, Meinhardt G, Kisaki H, Kharbanda S, Roberson M et al. (1995). Proteolytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells. EMBO J 14: 6148–6156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emoto Y, Ksaki H, Manome Y, Kharbanda S, Kufe D . (1996). Activation of protein kinase Cdelta in human myeloid leukemia cells treated with 1-beta-D-arabinofuranosylcytosine. Blood 87: 1990–1996.

    CAS  PubMed  Google Scholar 

  • Fukasawa K, Rulong S, Resau J, Pinto da Silva P, Woude GF . (1995). Overexpression of mos oncogene product in Swiss3T3 cells induces apoptosis preferentially during S-phase. Oncogene 10: 1–8.

    CAS  PubMed  Google Scholar 

  • Ghayur T, Hugunin M, Talanian RV, Ratnofsky S, Quinlan C, Emoto Y et al. (1996). Proteolytic activation of protein kinase C delta by an ICE/CED 3-like protease induces characteristics of apoptosis. J Exp Med 184: 2399–2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin Jr WG, Levrero M et al. (1999). The tyrosine kinase C-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399: 806–809.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez S, Prives C, Cordon-Cardo C . (2003). p73α regulation by Chk1 in response to DNA damage. Mol Cel Bi 23: 8161–8171.

    Article  CAS  Google Scholar 

  • Guo J, Zhu T, Luo LY, Huang Y, Sunkavalli RG, Chen CY . (2009). PI3K acts in synergy with loss of PKC to elicit apoptosis via the UPR. J Cell Biochem 107: 76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutcher I, Webb PR, Anderson NG . (2003). The isoform specific regulation of apoptosis by protein kinase C. Cell Mol Life Sci 60: 1061–1070.

    Article  CAS  PubMed  Google Scholar 

  • Humphries MJ, Limesand KH, Schneider JC, Nakayama KI, Anderson SM et al. (2006). Suppression of apoptosis in the protein kinase C delta null mouse in vivo. J Biol Chem 281: 9728–9737.

    Article  CAS  PubMed  Google Scholar 

  • Irwin M, Kondon K, Marin MC, Cheng LS, Hahn WC, Kaelin Jr WH . (2003). Chemosensitivity linked to p73 function. Cancer Cell 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Jackson DN, Foster DA . (2004). The enigmatic protein kinase Cδ: complex roles in cell proliferation and survival. FASEB J 18: 627–636.

    Article  CAS  PubMed  Google Scholar 

  • Jost CA, Marin MC, Kaelin Jr WG . (1997). p73 is a human p53-related protein that can induce apoptosis. Nature 389: 191–194.

    Article  CAS  PubMed  Google Scholar 

  • Kajimoto T, Shirai Y, Sakai N, Yamamoto T, Matsuzaki H, Kikkawa U et al. (2004). Ceramide-induced apoptosis by translocation, phosphorylation and activation of protein kinase Cδ in the Golgi complex. J Biol Chem 279: 12668–12676.

    Article  CAS  PubMed  Google Scholar 

  • Kampfer S, Windegger M, Hochholdinger F, Schwaiger W, Pestell RG, Baier G et al. (2001). Protein kinase C isoforms involved in the transcriptional activation of cyclin D1 by transforming Ha-ras. J Biol Chem 276: 42834–42842.

    Article  CAS  PubMed  Google Scholar 

  • Kaul S, Anantharam V, Yang Y, Choi CJ, Kanthasamy A, Kanthasamy AG . (2005). Tyrosine phosphorylation regulates the proteolytic activation of protein kinase Cδ in dopaminergic neuronal cells. J Biol Chem 280: 28721–28730.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Kitaura J, Yao L, McHenry RW, Kawakami Y, Newtori AC et al. (2003). A ras activation pathway dependent on syk phosphorylation of protein kinase C. Proc Natl Acad Sci USA 100: 9470–9475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kheifets V, Bright R, Inagaki K, Schechtman D, Mochly-Rosen D . (2006). Protein kinase Cδ (δPKC)-Annexin V interaction: a required step in δPKC translocation and function. J Biol Chem 281: 23218–23226.

    Article  CAS  PubMed  Google Scholar 

  • Kiley SC, Clark KJ, Duddy SK, Welch DR, Jaken S . (1999). Increased protein kinase C delta in mammary tumor cells: relationship to transformation and metastatic progression. Oncogene 18: 6748–6757.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ . (1997). p53 the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Jiang YX, Zhang J, Soon L, Flechner L, Kapoor V et al. (1998). Protein kinase C-delta is an important signaling molecule in insulin-like growth factor I receptor-mediated cell transformation. Mol Cell Biol 18: 5888–5898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137: 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy DR, Willumsen BM . (1993). Function and regulation of Ras. Annu Rev Biochem 62: 851–891.

    Article  CAS  PubMed  Google Scholar 

  • Mandil R, Ashkenazi E, Blass M, Kronfeld I, Kazimirsky G, Rosenthal G et al. (2001). Protein kinase Calpha and protein kinase Cdelta play opposite roles in the proliferation and apoptosis of glioma cells. Cancer Res 61: 4612–4619.

    CAS  PubMed  Google Scholar 

  • Matassa A, Carpenter L, Biden T, Humphries M, Reyland M . (2001). PKCdelta is required for mitochondrial-dependent apoptosis in salivary epithelial cells. J Biol Chem 276: 29719–29728.

    Article  CAS  PubMed  Google Scholar 

  • McCormick F . (1993). Signal transduction: how receptors turn Ras on. Nature 363: 5–16.

    Article  Google Scholar 

  • McNeill H, Downward J . (1999). Apoptosis: Ras to the rescue in the fly eye. Curr Biol 9: 176–179.

    Article  Google Scholar 

  • Min BW, Kim CG, Ko J, Lim Y, Lee YH, Shin SY . (2008). Transcription of the protein kinase C-δ gene is activated by JNK through c-Jun and ATF2 in response to the anticancer agent doxorubicin. Exp Mole Med 40: 699–708.

    Article  CAS  Google Scholar 

  • Mizuno K, Noda K, Araki T, Imagoka T, Kobayashi Y, Akita Y et al. (1997). The proteolytic cleavage of protein kinase C isotypes, which generates kinase and regulatory fragments, correlates with Fas-mediated and 12-O-tetradecanoyl-phorbol-13-acetate-induced apoptosis. Eur J Biochem 250: 7–18.

    Article  CAS  PubMed  Google Scholar 

  • Murriel CL, Churchill E, Inagaki K, Szweda LI, Mochly-Rosen D . (2004). Protein kinase Cdelta activation induces apoptosis in response to cardiac ischemia and reperfusion damage: a mechanism involving BAD and the mitochondria. J Biol Chem 279: 47985–47991.

    Article  CAS  PubMed  Google Scholar 

  • Ni H, Ergin M, Tibudan SS, Denning MF, Izban KF, Alkan S . (2003). Protein kinase C-delta is commonly expressed in multiple myeloma cells and its downregulation by rottlerin causes apoptosis. Br J Haematol 121: 849–856.

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y . (1995). Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9: 484–496.

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Datta R, Shioya H, Li Y, Oki E, Biedermann V et al. (2002). p73β is regulated by protein kinase Cδ catalytic fragment generated in the apoptotic response to DNA damage. J Biol Chem 277: 33758–33765.

    Article  CAS  PubMed  Google Scholar 

  • Reyland M, Anderson S, Matassa A, Barzen K, Quissell D . (1999). Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells. J Biol Chem 274: 19115–19123.

    Article  CAS  PubMed  Google Scholar 

  • Reyland ME . (2007). Protein kinase C delta and apoptosis. Biochem Soc Trans 35: 1001–1004.

    Article  CAS  PubMed  Google Scholar 

  • Rusanescu G, Gotoh T, Tian X, Feig L . (2001). Regulation of Ras signaling specificity by protein kinase C. Mol Chem Biol 21: 2650–2658.

    CAS  Google Scholar 

  • Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137: 821–834.

    Article  CAS  PubMed  Google Scholar 

  • Sitailo LA, Tibudan SS, Denning MF . (2004). Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain. J Invest Dermatol 123: 434–443.

    Article  CAS  PubMed  Google Scholar 

  • Spitaler M, Cantrell DA . (2004). Protein kinase C and beyond. Nature Immunol 5: 785–790.

    Article  CAS  Google Scholar 

  • Walworth N, Davey S, Beach D . (1993). Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363: 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Wang HG, Reed JC . (1998). Bcl-2, Raf-1 and mitochondrial regulation of apoptosis. Biofactors 8: 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Whelan AD, Parker PJ . (1998). Loss of protein kinase C function induces an apoptotic response. Oncogene 16: 1939–1944.

    Article  CAS  PubMed  Google Scholar 

  • Xia S, Forman LW, Faller DV . (2007). Protein kinase Cδ is required for survival of cells expressing activated p21RAS. J Biol Chem 282: 13199–13210.

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Kaghad M, Caput D, McKeon F . (2002). On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18: 90–95.

    Article  PubMed  Google Scholar 

  • Zhang XM, Chen J, Xia YG, Xu Q . (2005). Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKCα and translocating PKCδ. Cancer Chemother Pharmacol 55: 251–262.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Z Luo and Q Yu (Boston University School of Medicine, Boston, MA, USA) for providing various reagents and useful suggestions. This study is supported by the National Institutes of Health (RO1CA100498) and the Department of Defense (W81XWH-04-1-0246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, T., Tsuji, T. & Chen, C. Roles of PKC isoforms in the induction of apoptosis elicited by aberrant Ras. Oncogene 29, 1050–1061 (2010). https://doi.org/10.1038/onc.2009.344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.344

Keywords

This article is cited by

Search

Quick links