Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Leupaxin acts as a mediator in prostate carcinoma progression through deregulation of p120catenin expression

Abstract

Recently, we could show that the focal adhesion protein leupaxin (LPXN) is expressed in human prostate carcinomas (PCa) and induces invasiveness of androgen-independent PCa cells. In this study we show that LPXN enhanced the progression of existing PCa in vivo by breeding transgenic mice with prostate-specific LPXN expression and TRAMP mice (transgenic adenocarcinoma of mouse prostate). Double transgenic LPXN/TRAMP mice showed a significant increase in poorly differentiated PCa and distant metastases as compared with control TRAMP mice. Additional studies on primary PCa cells generated from both transgenic backgrounds confirmed the connection regarding LPXN overexpression and increased motility and invasiveness of PCa cells. One mediator of LPXN-induced invasion was found to be the cell–cell adhesion protein p120catenin (p120CTN). Both in vitro and in vivo experiments revealed that p120CTN expression negatively correlates with LPXN expression, followed by a redistribution of β-catenin. Downregulation of LPXN using small interfering RNAs (siRNAs) resulted in a membranous localization of β-catenin, whereas strong nuclear accumulation of β-catenin was observed in p120CTN knockdown cells leading to enhanced transcription of the β-catenin target gene matrix metalloprotease-7. In conclusion, the present results indicate that LPXN enhances the progression of PCa through downregulation of p120CTN expression and that LPXN could function as a marker for aggressive PCa in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Anastasiadis PZ . (2006). p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta 1773: 34–46.

    Article  PubMed  Google Scholar 

  • Becker-Hapak M, McAllister SS, Dowdy SF . (2001). TAT-mediated protein transduction into mammalian cells. Methods 24: 247–256.

    Article  CAS  PubMed  Google Scholar 

  • Bidard FC, Pierga JY, Vincent-Salomon A, Poupon MF . (2008). A ‘class action’ against the microenvironment: do cancer cells cooperate in metastasis? Cancer Metastasis Rev 27: 5–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T . (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MC, Turner CE . (2004). Paxillin: adapting to change. Physiol Rev 84: 1315–1339.

    Article  CAS  PubMed  Google Scholar 

  • Chambers AF, Matrisian LM . (1997). Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89: 1260–1270.

    Article  CAS  PubMed  Google Scholar 

  • Deakin NO, Bass MD, Warwood S, Schoelermann J, Mostafavi-Pour Z, Knight D et al. (2009). An integrin-{alpha}4-14-3-3{zeta}-paxillin ternary complex mediat. J Cell Sci 15: 1654–1664.

    Article  Google Scholar 

  • Ellerbroek SM, Stack MS . (1999). Membrane associated matrix metalloproteinases in metastasis. Bioessays 21: 940–949.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SY, Ougolkov AV, Spiegelman VS, Minamoto T . (2005). Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle 4: 1522–1539.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto N, Yeh S, Kang HY, Inui S, Chang HC, Mizokami A et al. (1999). Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 19: 8316–8321.

    Article  Google Scholar 

  • Gimona M, Buccione R, Courtneidge SA, Linder S . (2008). Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol 20: 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg NM, DeMayo FJ, Finegold M, Medina D, Tilley W, Aspinall JO et al. (1995). Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92: 3439–3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenlee RT, Hill-Harmon MB, Murray T, Thun M . (2001). Cancer statistics. CA Cancer J Clin 51: 15–36.

    Article  CAS  PubMed  Google Scholar 

  • Grzmil M, Thelen P, Hemmerlein B, Schweyer S, Voigt S, Mury D et al. (2003). Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carcinoma cells. Am J Pathol 163: 543–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Lee BS, Khadeer MA, Tang Z, Chellaiah M, Abu-Amer Y et al. (2003). Leupaxin is a critical adapter protein in the adhesion zone of the osteoclast. J Bone Miner Res 8: 669–685.

    Article  Google Scholar 

  • Gupta GP, Massagué J . (2006). Cancer metastasis: building a framework. Cell 127: 679–695.

    Article  CAS  PubMed  Google Scholar 

  • Hatzfeld M . (2005). The p120 family of cell adhesion molecules. Eur J Cell Biol 84: 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y . (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med 231: 20–27.

    Article  CAS  Google Scholar 

  • Jagadeeswaran R, Surawska H, Krishnaswamy S, Janamanchi V, Mackinnon AC, Seiwert TY et al. (2008). Paxillin is a target for somatic mutations in lung cancer: implications for cell growth and invasion. Cancer Res 68: 132–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaggi M, Johansson SL, Baker JJ, Smith LM, Galich A, Balaji KC . (2005). Aberrant expression of E-cadherin and beta-catenin in human prostate cancer. Urol Oncol 23: 402–406.

    Article  CAS  PubMed  Google Scholar 

  • Jones LE, Humphreys MJ, Cambell F, Neoptolemos JP, Boyd MT . (2004). Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 10: 2832–2845.

    Article  CAS  PubMed  Google Scholar 

  • Kallakury BV, Sheehan CE, Ross JS . (2001a). Co-downregulation of cell adhesion proteins alpha- and beta-catenins, p120CTN, E-cadherin, and CD44 in prostatic adenocarcinomas. Hum Pathol 32: 849–855.

    Article  CAS  PubMed  Google Scholar 

  • Kallakury BV, Sheehan CE, Winn-Deen E, Oliver J, Fisher HA, Kaufman RP et al. (2001b). Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92: 2786–2795.

    Article  CAS  PubMed  Google Scholar 

  • Kasai M, Guerrero-Santoro J, Friedman R, Leman ES, Getzenberg RH, DeFranco DB . (2003). The Group 3 LIM domain protein paxillin potentiates androgen receptor transactivation in prostate cancer cell lines. Cancer Res 15: 4927–4935.

    Google Scholar 

  • Kaulfuss S, Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Neesen J et al. (2008). Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Mol Endocrinol 22: 1606–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauffenburger DA, Horwitz AF . (1996). Cell migration: a physically integrated molecular process. Cell 9: 359–369.

    Article  Google Scholar 

  • Lipsky BP, Beals CR, Staunton DE . (1998). Leupaxin is a novel LIM domain protein that forms a complex with PYK2. J Biol Chem 8: 11709–11713.

    Article  Google Scholar 

  • Liu S, Kiosses WB, Rose DM, Slepak M, Salgia R, Griffin JD et al. (2002). A fragment of paxillin binds the alpha 4 integrin cytoplasmic domain (tail) and selectively inhibits alpha 4-mediated cell migration. J Biol Chem 277: 20887–20894.

    Article  CAS  PubMed  Google Scholar 

  • McDonnell S, Narve M, Coffey Jr RJ, Matrisian LM . (1991). Expression and localization of the matrix metalloproteinase pump-1 (MMP-7) in human gastric and colon carcinomas. Mol Carcinog 4: 527–533.

    Article  CAS  PubMed  Google Scholar 

  • Millikan RE, Wen S, Pagliaro LC, Brown MA, Moomey B, Do KA et al. (2008). Phase III trial of androgen ablation with or without three cycles of systemic chemotherapy for advanced prostate cancer. J Clin Oncol 26: 5936–5942.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nong CZ, Pan LL, He WS, Zha XL, Ye HH, Huang HY . (2006). P120ctn overexpression enhances beta-catenin-E-cadherin binding and down regulates expression of survivin and cyclin D1 in BEL-7404 hepatoma cells. World J Gastroenterol 28: 1187–1191.

    Article  Google Scholar 

  • Peifer M, Berg S, Reynolds AB . (1994). A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76: 789–791.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno M, Fuchs E . (2006). Catenins: keeping cells from getting their signals crossed. Dev Cell 11: 601–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AB, Carnahan RH . (2004). Regulation of cadherin stability and turnover by p120ctn: implications in disease and cancer. Semin Cell Dev Biol 15: 657–663.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, Zhang Z . (1994). Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 14: 8333–8342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe RG, Weiss SJ . (2008). Breaching the basement membrane: who, when and how? Trends Cell Biol 18: 560–574.

    Article  CAS  PubMed  Google Scholar 

  • Sahu SN, Khadeer MA, Robertson BW, Nunez S, Bai G, Gupta A . (2007). Association of Leupaxin with Src in osteoclasts. Am J Physiol Cell Physiol 292: C581–C590.

    Article  CAS  PubMed  Google Scholar 

  • Shibanuma M, Kim-Kaneyama JR, Ishino K, Sakamoto N, Hishiki T, Yamaguchi K et al. (2003). Hic-5 communicates between focal adhesions and the nucleus through oxidant-sensitive nuclear export signal. Mol Biol Cell 14: 1158–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibanuma M, Kim-Kaneyama JR, Sato S, Nose K . (2004). A LIM protein, Hic-5, functions as a potential coactivator for Sp1. J Cell Biochem 91: 633–645.

    Article  CAS  PubMed  Google Scholar 

  • Shiomi T, Okada Y . (2003). MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 22: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Stetler-Stevenson WG . (2001). The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am 10: 383–392.

    Article  CAS  PubMed  Google Scholar 

  • van Oort IM, Tomita K, van Bokhoven A, Bussemakers MJ, Kiemeney LA, Karthaus HF et al. (2007). The prognostic value of E-cadherin and the cadherin-associated molecules alpha-, beta-, gamma-catenin and p120ctn in prostate cancer specific survival: a long-term follow-up study. Prostate 67: 1432–1438.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Song K, Krebs TL, Yang J, Danielpour D . (2008). Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55. Oncogene 27: 6791–6805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Song K, Sponseller TL, Danielpour D . (2005). Novel function of androgen receptor-associated protein 55/Hic-5 as a negative regulator of Smad3 signaling. J Biol Chem 280: 5154–5162.

    Article  CAS  PubMed  Google Scholar 

  • Wegener KL, Campbell ID . (2008). Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions. Mol Membr Biol 25: 376–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker HC, Girling J, Warren AY, Leung H, Mills IG, Neal DE . (2008). Alterations in beta-catenin expression and localization in prostate cancer. Prostate 68: 1196–1205.

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Guerrero J, Hong H, DeFranco DB, Stallcup MR . (2000). Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol Biol Cell 11: 2007–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R Kampe, B König and A Klages for their excellent technical assistance. We also thank M Schindler and H Riedesel for their assistance in generation of transgenic LPXN mice. This project was supported in part by the Forschungsförderungsprogramm of the Universitätsmedizin Göttingen (to SK), by the Deutsche Forschungsgemeinschaft (to SK KA 2946/1-1), the Deutsche Krebshilfe (to PB and SS, no. 108065) and the Horst Müggenburg and Gerhard Müggenburg-Stiftung (to PB and SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kaulfuß.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaulfuß, S., von Hardenberg, S., Schweyer, S. et al. Leupaxin acts as a mediator in prostate carcinoma progression through deregulation of p120catenin expression. Oncogene 28, 3971–3982 (2009). https://doi.org/10.1038/onc.2009.254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.254

Keywords

Search

Quick links