Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear EGFR contributes to acquired resistance to cetuximab

Abstract

Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR-blocking antibody that has been approved for the treatment of patients with head and neck squamous cell carcinoma and metastatic colorectal cancer. Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin, heparin-binding EGF and β-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and resensitization to cetuximab. In addition, expression of a nuclear localization sequence-tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AR:

amphiregulin

cEGFR:

cytoplasmic epidermal growth factor receptor

DMSO:

dimethyl sulfoxide

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

HB-EGF:

heparin-binding epidermal growth factor

HNSCC:

head and neck squamous cell carcinoma

nEGFR:

nuclear epidermal growth factor receptor

NLS:

nuclear localization sequence

NSCLC:

non-small cell lung cancer

PCNA:

proliferating cell nuclear antigen

p-Tyr:

phospho-tyrosine

SCC:

squamous cell carcinoma

SFK:

Src family kinases

TACE:

tumor necrosis factor-α converting enzyme

References

  • Arteaga CL . (2003). EGF receptor as a therapeutic target: patient selection and mechanisms of resistance to receptor-targeted drugs. J Clin Oncol 21: 289s–2291s.

    Article  PubMed  Google Scholar 

  • Bandyopadhyay D, Mandal M, Adam L, Mendelsohn J, Kumar R . (1998). Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273: 1568–1573.

    Article  CAS  PubMed  Google Scholar 

  • Bianco R, Troiani T, Tortora G, Ciardiello F . (2005). Intrinsic and acquired resistance to EGFR inhibitors in human cancer therapy. Endocr Relat Cancer 12: S159–S171.

    Article  CAS  PubMed  Google Scholar 

  • Borrell-Pagès M, Rojo F, Albanell J, Baselga J, Arribas J . (2003). TACE is required for the activation of the EGFR by TGF-alpha in tumors. EMBO J 22: 1114–1124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM . (2005). Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 11: 397–405.

    CAS  PubMed  Google Scholar 

  • Cao H, Lei ZM, Bian L, Rao CV . (1995). Functional nuclear epidermal growth factor receptors in human choriocarcinoma JEG-3 cells and normal human placenta. Endocrinology 136: 3163–3172.

    Article  CAS  PubMed  Google Scholar 

  • Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L et al. (2005). Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 280: 31182–31189.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann BJ, Caplin M, Savic B, Shah T, Lord CJ, Ashworth A et al. (2006). Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol Cancer Ther 5: 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G et al. (2005). Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol 25: 11005–11018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, McKenna WG, Weber CN, Feldman MD, Goldsmith JD, Mick R et al. (2002). Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clin Cancer Res 8: 885–892.

    PubMed  Google Scholar 

  • Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, Hung MC . (2006). Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 45: 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Hsu SC, Hung MC . (2007). Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem 282: 10432–10440.

    Article  CAS  PubMed  Google Scholar 

  • Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML et al. (2008). Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 36: 4337–4351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352: 786–792.

    Article  CAS  PubMed  Google Scholar 

  • Liao HJ, Carpenter G . (2007). Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol Biol Cell 18: 1064–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY et al. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3: 802–808.

    Article  CAS  PubMed  Google Scholar 

  • Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC . (2006a). Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 98: 1570–1583.

    Article  CAS  PubMed  Google Scholar 

  • Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y et al. (2005a). Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7: 575–589.

    Article  CAS  PubMed  Google Scholar 

  • Lo HW, Hsu SC, Hung MC . (2006b). EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat 95: 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Lo HW, Hung MC . (2006). Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94: 184–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC . (2005b). Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 65: 338–348.

    CAS  PubMed  Google Scholar 

  • Lu Y, Li X, Liang K, Luwor R, Siddik ZH, Mills GB et al. (2007). Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res 67: 8240–8247.

    Article  CAS  PubMed  Google Scholar 

  • Marti U, Burwen SJ, Wells A, Barker ME, Huling S, Feren AM et al. (1991). Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology 13: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Massie C, Mills IG . (2006). The developing role of receptors and adaptors. Nat Rev Cancer 6: 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Mukohara T, Engelman JA, Hanna NH, Yeap BY, Kobayashi S, Lindeman N et al. (2005). Differential effects of gefitinib and cetuximab on non-small-cell lung cancers bearing epidermal growth factor receptor mutations. J Natl Cancer Inst 97: 1185–1194.

    Article  CAS  PubMed  Google Scholar 

  • Ni CY, Murphy MP, Golde TE, Carpenter G . (2001). gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294: 2179–2181.

    Article  CAS  PubMed  Google Scholar 

  • Offterdinger M, Schofer C, Weipoltshammer K, Grunt TW . (2002). c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol 157: 929–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. (2005). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2: 1–11.

    Article  Google Scholar 

  • Psyrri A, Egleston B, Weinberger P, Yu Z, Kowalski D, Sasaki C et al. (2008). Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiol Biomarkers Prev 17: 1486–1492.

    Article  CAS  PubMed  Google Scholar 

  • Psyrri A, Yu Z, Weinberger PM, Sasaki C, Haffty B, Camp R et al. (2005). Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 11: 5856–5862.

    Article  CAS  PubMed  Google Scholar 

  • Rajput A, Koterba AP, Kreisberg JI, Foster JM, Willson JK, Brattain MG . (2007). A novel mechanism of resistance to epidermal growth factor receptor antagonism in vivo. Cancer Res 67: 665–673.

    Article  CAS  PubMed  Google Scholar 

  • Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13: 4909–4919.

    Article  CAS  PubMed  Google Scholar 

  • Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ et al. (2002). Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem 277: 12838–12845.

    Article  CAS  PubMed  Google Scholar 

  • Viloria-Petit A, Crombet T, Jothy S, Hicklin D, Bohlen P, Schlaeppi JM et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61: 5090–5101.

    CAS  PubMed  Google Scholar 

  • Viloria-Petit AM, Kerbel RS . (2004). Acquired resistance to EGFR inhibitors: mechanisms and prevention strategies. Int J Radiat Oncol Biol Phys 58: 914–926.

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z et al. (2004). Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6: 251–261.

    Article  CAS  PubMed  Google Scholar 

  • Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC et al. (2006). Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 8: 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S et al. (2008). Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27: 3944–3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler DL, Iida M, Kruser TJ, Nechrebecki MM, Dunn EF, Armstrong EA et al. (2009). Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther 8: 696–703.

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Wei Y, Du Y, Liu J, Chang B, Yu YL et al. (2009). Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog 48: 610–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Hung MC . (1994). Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun 203: 1589–1598.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shyhmin Huang, Eric A Armstrong and Sergio Benavente for their initial work in the establishment of cetuximab-resistant H226 cell lines. Cetuximab and dasatinib were kindly provided by ImClone and Bristol Myers Squibb, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D L Wheeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Iida, M., Dunn, E. et al. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28, 3801–3813 (2009). https://doi.org/10.1038/onc.2009.234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.234

Keywords

This article is cited by

Search

Quick links