Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity

Abstract

Heat shock protein 27 (HSP27) accumulates in stressed cells and helps them to survive adverse conditions. We have already shown that HSP27 has a function in the ubiquitination process that is modulated by its oligomerization/phosphorylation status. Here, we show that HSP27 is also involved in protein sumoylation, a ubiquitination-related process. HSP27 increases the number of cell proteins modified by small ubiquitin-like modifier (SUMO)-2/3 but this effect shows some selectivity as it neither affects all proteins nor concerns SUMO-1. Moreover, no such alteration in SUMO-2/3 conjugation is achievable by another HSP, such as HSP70. Heat shock factor 1 (HSF1), a transcription factor responsible for HSP expression, is one of the targets of HSP27. In stressed cells, HSP27 enters the nucleus and, in the form of large oligomers, binds to HSF1 and induces its modification by SUMO-2/3 on lysine 298. HSP27-induced HSF1 modification by SUMO-2/3 takes place downstream of the transcription factor phosphorylation on S303 and S307 and does not affect its DNA-binding ability. In contrast, this modification blocks HSF1 transactivation capacity. These data show that HSP27 exerts a feedback inhibition of HSF1 transactivation and enlighten the strictly regulated interplay between HSPs and HSF1. As we also show that HSP27 binds to the SUMO-E2-conjugating enzyme, Ubc9, our study raises the possibility that HSP27 may act as a SUMO-E3 ligase specific for SUMO-2/3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Anckar J, Hietakangas V, Denessiouk K, Thiele DJ, Johnson MS, Sistonen L . (2006). Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol Cell Biol 26: 955–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anckar J, Sistonen L . (2007a). Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594: 78–88.

    Article  PubMed  Google Scholar 

  • Anckar J, Sistonen L . (2007b). SUMO: getting it on. Biochem Soc Trans 35: 1409–1413.

    Article  CAS  PubMed  Google Scholar 

  • Ayaydin F, Dasso M . (2004). Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol Biol Cell 15: 5208–5218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomster HA, Hietakangas V, Wu J, Kouvonen P, Hautaniemi S, Sistonen L . (2009). Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites. Mol Cell Proteomics 8: 1382–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossis G, Malnou CE, Farras R, Andermarcher E, Hipskind R, Rodriguez M et al. (2005). Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 25: 6964–6979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossis G, Melchior F . (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21: 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Bruey JM, Paul C, Fromentin A, Hilpert S, Arrigo AP, Solary E et al. (2000). Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19: 4855–4863.

    Article  CAS  PubMed  Google Scholar 

  • Caignard A, Genne P, Olsson NO, Oriol R, Martin F . (1990). F11C antigen: A membrane marker able to distinguish two regressive and progressive variants from a rat colon adenocarcinoma. Int J Cancer 46: 633–639.

    Article  CAS  PubMed  Google Scholar 

  • Charette SJ, Lavoie JN, Lambert H, Landry J . (2000). Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20: 7602–7612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G et al. (2007). Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 14: 2839–2847.

    Article  CAS  PubMed  Google Scholar 

  • Didelot C, Schmitt E, Brunet M, Maingret L, Parcellier A, Garrido C . (2006). Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 172: 171–198.

    Article  CAS  Google Scholar 

  • During RL, Gibson BG, Li W, Bishai EA, Sidhu GS, Landry J et al. (2007). Anthrax lethal toxin paralyzes actin-based motility by blocking Hsp27 phosphorylation. EMBO J 26: 2240–2250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G . (2006). Heat shock proteins 27 and 70: Anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5: 2592–2601.

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo AP et al. (1998). Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58: 5495–5499.

    CAS  PubMed  Google Scholar 

  • Geiss-Friedlander R, Melchior F . (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956.

    Article  CAS  PubMed  Google Scholar 

  • Gill G . (2003). Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev 13: 108–113.

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Han J, Adam BL, Colburn NH, Wang MH, Dong Z et al. (2005). Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochem Biophys Res Commun 337: 1308–1318.

    Article  CAS  PubMed  Google Scholar 

  • Gurbuxani S, Bruey JM, Fromentin A, Larmonier N, Parcellier A, Jaattela M et al. (2001). Selective depletion of inducible HSP70 enhances immunogenicity of rat colon cancer cells. Oncogene 20: 7478–7485.

    Article  CAS  PubMed  Google Scholar 

  • Hay RT . (2005). SUMO: a history of modification. Mol Cell 18: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI et al. (2003). Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23: 2953–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A et al. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA 103: 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A et al. (2001). Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20: 3800–3810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmberg CI, Tran SE, Eriksson JE, Sistonen L . (2002). Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27: 619–627.

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK et al. (2001). Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276: 40263–40267.

    Article  CAS  PubMed  Google Scholar 

  • Jaattela M . (1995). Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int J Cancer 60: 689–693.

    Article  CAS  PubMed  Google Scholar 

  • Joanisse DR, Inaguma Y, Tanguay RM . (1998). Cloning and developmental expression of a nuclear ubiquitin-conjugating enzyme (DmUbc9) that interacts with small heat shock proteins in Drosophila melanogaster. Biochem Biophys Res Commun 244: 102–109.

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES . (2004). Protein modification by SUMO. Annu Rev Biochem 73: 355–382.

    Article  CAS  PubMed  Google Scholar 

  • Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J . (1999). HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274: 9378–9385.

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Kim EH, Lee JS, Jeoung D, Bae S, Kwon SH et al. (2008). HSF1as a mitotic regulator: Phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res 68: 7550–7560.

    Article  CAS  PubMed  Google Scholar 

  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ . (1998). Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273: 7523–7528.

    Article  CAS  PubMed  Google Scholar 

  • Mehlen P, Kretz-Remy C, Briolay J, Fostan P, Mirault ME, Arrigo AP . (1995a). Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells. Biochem J 312 (Pt 2): 367–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlen P, Mehlen A, Guillet D, Preville X, Arrigo AP . (1995b). Tumor necrosis factor-alpha induces changes in the phosphorylation, cellular localization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J Cell Biochem 58: 248–259.

    Article  CAS  PubMed  Google Scholar 

  • Parcellier A, Brunet M, Schmitt E, Col E, Didelot C, Hammann A et al. (2006). HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S-phase re-entry in stressed cells. FASEB J 20: 1179–1181.

    Article  CAS  PubMed  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L . (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15: 1118–1131.

    Article  CAS  PubMed  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C et al. (1999). Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274: 18947–18956.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh H, Hinchey J . (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252–6258.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C . (2007). Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. J Leukoc Biol 81: 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Mosser DD, Morimoto RI . (1998). Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12: 654–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voellmy R, Boellmann F . (2007). Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594: 89–99.

    Article  PubMed  Google Scholar 

  • Westerheide SD, Kawahara TL, Orton K, Morimoto RI . (2006). Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281: 9616–9622.

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA et al. (1999). HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18: 5943–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, Choi CY et al. (2008). Small ubiquitin related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J Biol Chem 283: 29405–29415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L Sistonen and J Anckar (Turku Centre for Biotechnology, Finland) for HSF1 and SUMO-2/3 tools, their helpful advices and discussions. We thank M Gaestel and A Vertii for sharing with us HSP27 phosphorylation mutants’ constructions. This work was supported by grants from the ‘Ligue Nationale Contre le Cancer’ and its committees in the ‘Nièvre’ and ‘Sâone et Loire’. MB and ALJ are recipients of a doctoral fellowship from the ‘Ligue Nationale contre le Cancer’, ADT has a postdoctoral fellowship from ‘L’Association pour la Recherche contre le Cancer’, and EF has an INCa financing. CG and MP lead teams ‘Labellisées’ from the ‘Ligue Nationale contre le Cancer’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Garrido.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunet Simioni, M., De Thonel, A., Hammann, A. et al. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 28, 3332–3344 (2009). https://doi.org/10.1038/onc.2009.188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.188

Keywords

This article is cited by

Search

Quick links