Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nucleophosmin protein expression level, but not threonine 198 phosphorylation, is essential in growth and proliferation

Abstract

Nucleophosmin (NPM), an oligomeric phosphoprotein and nucleolar target of the ARF tumor suppressor, contributes to several critical cellular processes. Previous studies have shown that the human NPM's phosphorylation by cyclin E–cyclin-dependent kinase 2 (cdk2) on threonine (Thr) 199 regulates its translocation from the centrosome during cell cycle progression. Given our previous finding that ARF directly binds NPM, impeding its transit to the cytoplasm and arresting cells before S-phase entry, we hypothesized that ARF might also inhibit NPM phosphorylation. However, ARF induction did not impair phosphorylation of the cdk2 target residue in murine NPM, Thr198. Furthermore, phosphorylation of Thr198 occurred throughout the cell cycle and was concomitant with increases in overall NPM expression. To investigate the cell's presumed requirement for NPM-Thr198 phosphorylation in promoting the processes of growth and proliferation, we examined the effects of a non-phosphorylatable NPM mutant, T198A, in a clean cell system in which endogenous NPM had been removed by RNA interference. Here, we show that the T198A mutant is fully capable of executing NPM's described roles in nucleocytoplasmic shuttling, ribosome export and cell cycle progression. Moreover, the proliferative defects observed with stable NPM knockdown were restored by mutant NPM-T198A expression. Thus, we demonstrate that the reduction in NPM protein expression blocks cellular growth and proliferation, whereas phosphorylation of NPM-Thr198 is not essential for NPM's capacity to drive cell cycle progression and proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M . (2003). Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426: 570–574.

    Article  CAS  Google Scholar 

  • Bertwistle D, Sugimoto M, Sherr CJ . (2004). Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24: 985–996.

    Article  CAS  Google Scholar 

  • Brady SN, Yu Y, Maggi Jr LB, Weber JD . (2004). ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol Cell Biol 24: 9327–9338.

    Article  CAS  Google Scholar 

  • Cha H, Hancock C, Dangi S, Maiguel D, Carrier F, Shapiro P . (2004). Phosphorylation regulates nucleophosmin targeting to the centrosome during mitosis as detected by cross-reactive phosphorylation-specific MKK1/MKK2 antibodies. Biochem J 378: 857–865.

    Article  CAS  Google Scholar 

  • Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. (2005). Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 25: 8874–8886.

    Article  CAS  Google Scholar 

  • Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . (2002). Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4: 529–533.

    Article  CAS  Google Scholar 

  • Colombo E, Martinelli P, Zamponi R, Shing DC, Bonetti P, Luzi L et al. (2006). Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res 66: 3044–3050.

    Article  CAS  Google Scholar 

  • Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. (2005). Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352: 254–266.

    Article  CAS  Google Scholar 

  • Gao H, Jin S, Song Y, Fu M, Wang M, Liu Z et al. (2005). B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem 280: 10988–10996.

    Article  CAS  Google Scholar 

  • Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. (2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437: 147–153.

    Article  CAS  Google Scholar 

  • Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G . (2001). Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291: 1547–1550.

    Article  CAS  Google Scholar 

  • Honda R, Yasuda H . (1999). Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18: 22–27.

    Article  CAS  Google Scholar 

  • Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12: 1151–1164.

    Article  CAS  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659.

    Article  CAS  Google Scholar 

  • Khodjakov A, Rieder CL . (2001). Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 153: 237–242.

    Article  CAS  Google Scholar 

  • Kondo T, Minamino N, Nagamura-Inoue T, Matsumoto M, Taniguchi T, Tanaka N . (1997). Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene 15: 1275–1281.

    Article  CAS  Google Scholar 

  • Li YP . (1997). Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71: 4098–4102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Yung BY . (1999). in vivo interaction of nucleophosmin/B23 and protein C23 during cell cycle progression in HeLa cells. Cancer Lett 144: 45–54.

    Article  CAS  Google Scholar 

  • Liu QR, Chan PK . (1991). Formation of nucleophosmin/B23 oligomers requires both the amino- and the carboxyl-terminal domains of the protein. Eur J Biochem 200: 715–721.

    Article  CAS  Google Scholar 

  • Maggi Jr LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR et al. (2008). Nucleophosmin serves as a rate-limiting nuclear export chaperone for the mammalian ribosome. Mol Cell Biol 28: 7050–7065.

    Article  CAS  Google Scholar 

  • Namboodiri VM, Schmidt-Zachmann MS, Head JF, Akey CW . (2004). Purification, crystallization and preliminary X-ray analysis of the N-terminal domain of NO38, a nucleolar protein from Xenopus laevis. Acta Crystallogr D Biol Crystallogr 60: 2325–2327.

    Article  Google Scholar 

  • Okuda M . (2002). The role of nucleophosmin in centrosome duplication. Oncogene 21: 6170–6174.

    Article  CAS  Google Scholar 

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK et al (2000). Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103: 127–140.

    Article  CAS  Google Scholar 

  • Okuwaki M, Matsumoto K, Tsujimoto M, Nagata K . (2001). Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett 506: 272–276.

    Article  CAS  Google Scholar 

  • Okuwaki M, Tsujimoto M, Nagata K . (2002). The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol Biol Cell 13: 2016–2030.

    Article  CAS  Google Scholar 

  • Pelletier CL, Maggi Jr LB, Brady SN, Scheidenhelm DK, Gutmann DH, Weber JD . (2007). TSC1 Sets the rate of ribosome export and protein synthesis through nucleophosmin translation. Cancer Res 67: 1609–1617.

    Article  CAS  Google Scholar 

  • Roussel MF, Theodoras AM, Pagano M, Sherr CJ . (1995). Rescue of defective mitogenic signaling by D-type cyclins. Proc Natl Acad Sci USA 92: 6837–6841.

    Article  CAS  Google Scholar 

  • Sherr CJ, Weber JD . (2000). The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99.

    Article  CAS  Google Scholar 

  • Shinmura K, Tarapore P, Tokuyama Y, George KR, Fukasawa K . (2005). Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett 579: 6621–6634.

    Article  CAS  Google Scholar 

  • Spector DL, Ochs RL, Busch H . (1984). Silver staining, immunofluorescence, and immunoelectron microscopic localization of nucleolar phosphoproteins B23 and C23. Chromosoma 90: 139–148.

    Article  CAS  Google Scholar 

  • Tao W, Levine AJ . (1999). P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc Natl Acad Sci USA 96: 6937–6941.

    Article  CAS  Google Scholar 

  • Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K . (2001). Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276: 21529–21537.

    Article  CAS  Google Scholar 

  • Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S, Khodjakov A et al. (2007). Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol 176: 173–182.

    Article  CAS  Google Scholar 

  • Wang W, Budhu A, Forgues M, Wang XW . (2005). Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication. Nat Cell Biol 7: 823–830.

    Article  CAS  Google Scholar 

  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF et al. (2000). p53-independent functions of the p19 (ARF) tumor suppressor. Genes Dev 14: 2358–2365.

    Article  CAS  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . (1999). Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20–26.

    Article  CAS  Google Scholar 

  • Winey M . (1999). Cell cycle: driving the centrosome cycle. Curr Biol 9: R449–R452.

    Article  CAS  Google Scholar 

  • Yang C, Maiguel DA, Carrier F . (2002). Identification of nucleolin and nucleophosmin as genotoxic stress-responsive RNA-binding proteins. Nucleic Acids Res 30: 2251–2260.

    Article  CAS  Google Scholar 

  • Yu Y, Maggi Jr LB., Brady SN, Apicelli AJ, Dai MS, Lu H et al. (2006). Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol Cell Biol 26: 3798–3809.

    Article  CAS  Google Scholar 

  • Yung BY, Chan PK . (1987). Identification and characterization of a hexameric form of nucleolar phosphoprotein B23. Biochim Biophys Acta 925: 74–82.

    Article  CAS  Google Scholar 

  • Zatsepina OV, Rousselet A, Chan PK, Olson MO, Jordan EG, Bornens M . (1999). The nucleolar phosphoprotein B23 redistributes in part to the spindle poles during mitosis. J Cell Sci 112: 455–466.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Sheila Stewart, Gregory Longmore, J Alan Diehl, Martine Roussel, Charles Sherr and Gerard Zambetti for gifts of plasmid constructs, antibodies and primary TKO MEFs. In addition, we would like to thank Sheila Stewart, Helen Piwnica-Worms, Michael Tomasson and John Majors for insightful discussions throughout the course of this study.

SNB was supported by the Cancer Biology Pathway. CLP was a trainee in the Lucille P Markey Special Emphasis Pathway in Human Pathobiology. JDW was funded through the National Institutes of Health and Department of Defense Era of Hope Scholar Award in Breast Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, S., Maggi, L., Winkeler, C. et al. Nucleophosmin protein expression level, but not threonine 198 phosphorylation, is essential in growth and proliferation. Oncogene 28, 3209–3220 (2009). https://doi.org/10.1038/onc.2009.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.178

Keywords

This article is cited by

Search

Quick links