Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A combinatorial mechanism for determining the specificity of E2F activation and repression

Abstract

Various studies have detailed the role of E2F proteins in both transcription activation and repression. Further study has shown that distinct promoter elements, but comprising the same E2F-recognition motif, confer positive or negative E2F control and that this reflects binding of either activator or repressor E2F proteins, respectively. We now show that the specificity of binding of an activator or repressor E2F protein is determined by adjacent sequences that bind a cooperating transcription factor. We propose that the functional E2F element is a module comprising not only the E2F-binding site but also the adjacent site for the cooperating transcription factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aparicio O, Geisberg JV, Sekinger EA, Yang A, Moqtaderi Z, Struhl K . (2005). Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Mol Biol, Chapter 21: Unit 21.3.

  • Araki K, Nakajima Y, Eto K, Ikeda MA . (2003). Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter. Oncogene 22: 7632–7641.

    Article  CAS  PubMed  Google Scholar 

  • Bates S, Phillips AC, Clark PA, Stott F, Peters G, Ludwig RL et al. (1998). p14ARF links the tumour suppressors RB and p53. Nature 395: 124–125.

    Article  CAS  PubMed  Google Scholar 

  • Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I et al. (2008). JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36: D102–D106.

    Article  CAS  PubMed  Google Scholar 

  • Christensen J, Cloos P, Toftegaard U, Klinkenberg D, Bracken AP, Trinh E et al. (2005). Characterization of E2F8, a novel E2F-like cell cycle regulated repressor of E2F activated transcription. Nucleic Acids Res 33: 5458–5470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croxton R, Ma Y, Song L, Haura EB, Cress WD . (2002). Direct repression of the Mcl-1 promoter by E2F1. Oncogene 21: 1359–1369.

    Article  CAS  PubMed  Google Scholar 

  • de Bruin A, Maiti B, Jakoi L, Timmers C, Buerki R, Leone G . (2003). Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem 278: 42041–42049.

    Article  CAS  PubMed  Google Scholar 

  • DeGregori J, Johnson DG . (2006). Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med 6: 739–748.

    CAS  PubMed  Google Scholar 

  • DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR . (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 94: 7245–7250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Stefano L, Jensen MR, Helin K . (2003). E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J 22: 6289–6298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad BM, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giangrande P, Zhu W, Schlisio S, Sun XH, Mori S, Gaubatz S et al. (2004). A role for E2F6 in distinguishing G1/S and G2/M specific transcription. Genes Dev 18: 2941–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giangrande PH, Hallstrom TC, Tunyaplin C, Calame K, Nevins JR . (2003). Identification of the E box factor TFE3 as a functional partner for the E2F3 transcription factor. Mol Cell Biol 23: 3707–3720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallstrom TC, Mori S, Nevins JR . (2007). An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13: 11–22.

    Article  Google Scholar 

  • Hallstrom TC, Nevins JR . (2003). Specificity in the activation and control of transcription factor E2F-dependent apoptosis. Proc Natl Acad Sci USA 100: 10848–10853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallstrom TC, Nevins JR . (2006). Jab1 is a specificity factor for E2F1-induced apoptosis. Genes Dev 20: 613–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M-A, Jakoi L, Nevins JR . (1996). A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc Natl Acad Sci USA 93: 3215–3220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin M, Martin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648.

    Article  CAS  PubMed  Google Scholar 

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21: 4684–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L-J, Chang JT, Bild AH, Nevins JR . (2007). Compensation and specificity of function within the E2F family. Oncogene 26: 321–327.

    Article  CAS  PubMed  Google Scholar 

  • Kowalik TF, DeGregori J, Leone G, Nevins JR . (1998). E2F1-specific induction of apoptosis and p53 accumulation is modulated by mdm2. Cell Growth Differ 9: 113–118.

    CAS  PubMed  Google Scholar 

  • Kowalik TF, DeGregori J, Schwarz JK, Nevins JR . (1995). E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 69: 2491–2500.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR et al. (2009). The UCSC Genome Browser Database: update 2009. Nucleic Acids Res 37: D755–D761.

    Article  CAS  PubMed  Google Scholar 

  • Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF . (2000). A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407: 642–644.

    Article  CAS  PubMed  Google Scholar 

  • Logan N, Graham A, Zhao XD, Fisher RI, Maiti B, Leone G et al. (2005). E2F-8: an E2F family member with a similar organization of DNA binding domains to E2F-7. Oncogene 24: 5000–5004.

    Article  CAS  PubMed  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. (2006). TRANSFAC and its moduel TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34: D108–D110.

    Article  CAS  PubMed  Google Scholar 

  • Moroni MC, Hickman ES, Denchi EL, Caprara G, Colli E, Cecconi F et al. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3: 552–558.

    Article  CAS  PubMed  Google Scholar 

  • Muller H, Bracken AP, Vernell R, Moroni MC, Christians F, Grassilli E et al. (2001). E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15: 267–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M et al. (2002). Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4: 859–864.

    Article  CAS  PubMed  Google Scholar 

  • Nevins JR . (1998). Toward an understanding of the functional complexity of the E2F and Retinoblastoma families. Cell Growth Differ 9: 585–593.

    CAS  PubMed  Google Scholar 

  • Pilpel Y, Sudarsanam P, Church GM . (2001). Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29: 153–159.

    Article  CAS  PubMed  Google Scholar 

  • Polager S, Kalma Y, Berkovich E, Ginsberg D . (2002). E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21: 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S et al. (2004). Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 24: 2968–2977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlisio S, Halperin T, Vidal M, Nevins JR . (2002). Interaction of YY1 with E2Fs, mediated by RYBP, provides a mechanism for specificity of E2F function. EMBO J 21: 5775–5786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears RC, Nevins JR . (2002). Signaling networks that link cell proliferation and cell fate. J Biol Chem 277: 11617–11620.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (1996). Cancer cell cycles. Science 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  • Smale ST . (2001). Core promoters: active contributors to combinatorial gene regulation. Genes Dev 15: 2503–2508.

    Article  CAS  PubMed  Google Scholar 

  • Stanojevic D, Small S, Levine M . (1991). Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254: 1385–1387.

    Article  CAS  PubMed  Google Scholar 

  • Stiewe T, Putzer BM . (2000). Role of the p53 homologue p73 in E2F1-induced apoptosis. Nat Genet 26: 464–469.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the E2F and Rb families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Kassatly RF, Cress WD, Horowitz JM . (1997). Subunit composition determines E2F DNA-binding site specificity. Mol Cell Biol 17: 6994–7007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommasi S, Pfeifer GP . (1995). in vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol Cell Biol 15: 6901–6913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimarchi JM, Fairchild B, Wen J, Lees JA . (2001). The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc Natl Acad Sci 98: 1519–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Vigo E, Muller H, Prosperini E, Hateboer G, Cartwright P, Moroni MC et al. (1999). CDC25A phosphatase is a target of E2F and is required for efficient E2f-induced S phase. Mol Cell Biol 19: 6379–6395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells J, Boyd KE, Fry CJ, Bartley SM, Farnham PJ . (2000). Target gene specificity of E2F and pocket protein family members in living cells. Mol Cell Biol 20: 5797–5807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wysocka A, Herr W . (2003). The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 28: 294–304.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto KR, Darimont BD, Wagner RL, Iniguez-Lluhi JA . (1998). Building transcriptional regulatory complexes: signals and surfaces. Cold Spring Harbor Symp Quant Biol 63: 587–598.

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, DeGregori J, Shohet RV, Leone G, Stillman B, Nevins JR et al. (1998). Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc Natl Acad Sci USA 95: 3603–3608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Fraenkel E, Pabo CO, Pavletich NP . (1999). Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev 13: 666–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Giangrande P, Nevins JR . (2004). E2Fs link the control of G1/S and G2/M. EMBO J 23: 4615–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebold U, Reza T, Caron A, Lees JA . (2001). E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev 15: 386–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Nevins laboratory for valuable input throughout the course of this study and for comments on the paper. The project described was supported by award number R01CA104663 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Nevins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freedman, J., Chang, J., Jakoi, L. et al. A combinatorial mechanism for determining the specificity of E2F activation and repression. Oncogene 28, 2873–2881 (2009). https://doi.org/10.1038/onc.2009.153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.153

Keywords

This article is cited by

Search

Quick links