Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pim-1 plays a pivotal role in hypoxia-induced chemoresistance

Abstract

Hypoxia changes the responses of cancer cells to many chemotherapy agents, resulting in chemoresistance. The underlying molecular mechanism of hypoxia-induced drug resistance remains unclear. Pim-1 is a survival kinase, which phosphorylates Bad at serine 112 to antagonize drug-induced apoptosis. Here we show that hypoxia increases Pim-1 in a hypoxia-inducible factor-1α-independent manner. Inhibition of Pim-1 function by dominant-negative Pim-1 dramatically restores the drug sensitivity to apoptosis induced by chemotherapy under hypoxic conditions in both in vitro and in vivo tumor models. Introduction of siRNAs for Pim-1 also resensitizes cancer cells to chemotherapy drugs under hypoxic conditions, whereas forced overexpression of Pim-1 endows solid tumor cells with resistance to cisplatin, even under normoxia. Dominant-negative Pim-1 prevents a decrease in mitochondrial transmembrane potential in solid tumor cells, which is normally induced by cisplatin (CDDP), followed by the reduced activity of Caspase-3 and Caspase-9, indicating that Pim-1 participates in hypoxia-induced drug resistance through the stabilization of mitochondrial transmembrane potential. Our results demonstrate that Pim-1 is a pivotal regulator involved in hypoxia-induced chemoresistance. Targeting Pim-1 may improve the chemotherapeutic strategy for solid tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CCCP:

carbonylcyanide m-chlorophenylhydrazone

CDDP:

cisplatin

dnPim-1:

dominant-negative Pim-1

HIF-1:

hypoxia-inducible factor-1

HRE:

hypoxia response element

MTP:

mitochondrial transmembrane potential

TMRE:

tetramethylrhodamine, ethylester, perchlorate

References

  • Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . (2004). Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 571: 43–49.

    Article  CAS  Google Scholar 

  • Arsham AM, Plas DR, Thompson CB, Simon MC . (2004). Akt and hypoxia-inducible factor-1 independently enhance tumor growth and angiogenesis. Cancer Res 64: 3500–3507.

    Article  CAS  Google Scholar 

  • Bandyopadhyay RS, Phelan M, Faller DV . (1995). Hypoxia induces AP-1-regulated genes and AP-1 transcription factor binding in human endothelial and other cell types. Biochim Biophys Acta 1264: 72–78.

    Article  Google Scholar 

  • Cardenas-Navia LI, Yu D, Braun RD, Brizel DM, Secomb TW, Dewhirst MW . (2004). Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing. Cancer Res 64: 6010–6017.

    Article  CAS  Google Scholar 

  • Chen J, Kobayashi M, Darmanin S, Qiao Y, Gully C, Zhao R et al. (2009). Hypoxia-mediated upregulation of Pim-1 contributes to solid tumor formation. Am J Pathol (in press).

  • Chen J, Zhao S, Nakada K, Kuge Y, Tamaki N, Okada F et al. (2003). Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am J Pathol 162: 1283–1291.

    Article  CAS  Google Scholar 

  • Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP . (2002). Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62: 3387–3394.

    CAS  PubMed  Google Scholar 

  • Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W et al. (1984). Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37: 141–150.

    Article  CAS  Google Scholar 

  • Dewhirst MW, Cao Y, Moeller B . (2008). Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8: 425–437.

    Article  CAS  Google Scholar 

  • Eichmann A, Yuan L, Breant C, Alitalo K, Koskinen PJ . (2000). Developmental expression of pim kinases suggests functions also outside of the hematopoietic system. Oncogene 19: 1215–1224.

    Article  CAS  Google Scholar 

  • Gatenby RA, Kessler HB, Rosenblum JS, Coia LR, Moldofsky PJ, Hartz WH et al. (1988). Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14: 831–838.

    Article  CAS  Google Scholar 

  • Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM et al. (1992). Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 22: 199–212.

    Article  CAS  Google Scholar 

  • Koong AC, Chen EY, Giaccia AJ . (1994). Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54: 1425–1430.

    CAS  PubMed  Google Scholar 

  • Lilly M, Kraft A . (1997). Enforced expression of the Mr 33,000 Pim-1 kinase enhances factor-independent survival and inhibits apoptosis in murine myeloid cells. Cancer Res 57: 5348–5355.

    CAS  PubMed  Google Scholar 

  • Lilly M, Sandholm J, Cooper JJ, Koskinen PJ, Kraft A . (1999). The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene 18: 4022–4031.

    Article  CAS  Google Scholar 

  • Liu L, Ning X, Sun L, Zhang H, Shi Y, Guo C et al. (2008). Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 99: 121–128.

    CAS  PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490.

    Article  CAS  Google Scholar 

  • Mizukami Y, Li J, Zhang X, Zimmer MA, Iliopoulos O, Chung DC . (2004). Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 64: 1765–1772.

    Article  CAS  Google Scholar 

  • Niizeki H, Kobayashi M, Horiuchi I, Akakura N, Chen J, Wang J et al. (2002). Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. Br J Cancer 86: 1914–1919.

    Article  CAS  Google Scholar 

  • Pierce AC, Jacobs M, Stuver-Moody C . (2008). Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J Med Chem 51: 1972–1975.

    Article  CAS  Google Scholar 

  • Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C et al. (2005). Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280: 6130–6137.

    Article  CAS  Google Scholar 

  • Selten G, Cuypers HT, Boelens W, Robanus-Maandag E, Verbeek J, Domen J et al. (1986). The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell 46: 603–611.

    Article  CAS  Google Scholar 

  • Semenza GL . (1999). Perspectives on oxygen sensing. Cell 98: 281–284.

    Article  CAS  Google Scholar 

  • Teh BG . (2004). [Pim-1 induced by hypoxia is involved in drug resistance and tumorigenesis of solid tumor cells]. Hokkaido Igaku Zasshi 79: 19–26.

    CAS  PubMed  Google Scholar 

  • Teicher BA . (1994). Hypoxia and drug resistance. Cancer Metastasis Rev 13: 139–168.

    Article  CAS  Google Scholar 

  • Teicher BA, Lazo JS, Sartorelli AC . (1981). Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41: 73–81.

    CAS  PubMed  Google Scholar 

  • Toffoli S, Michiels C . (2008). Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J 275: 2991–3002.

    Article  CAS  Google Scholar 

  • Valdman A, Fang X, Pang ST, Ekman P, Egevad L . (2004). Pim-1 expression in prostatic intraepithelial neoplasia and human prostate cancer. Prostate 60: 367–371.

    Article  CAS  Google Scholar 

  • van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. (1989). Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56: 673–682.

    Article  CAS  Google Scholar 

  • Vaupel P, Schlenger K, Knoop C, Hockel M . (1991). Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51: 3316–3322.

    CAS  PubMed  Google Scholar 

  • Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS . (2002). Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 1593: 45–55.

    Article  CAS  Google Scholar 

  • Winn LM, Lei W, Ness SA . (2003). Pim-1 phosphorylates the DNA binding domain of c-Myb. Cell Cycle 2: 258–262.

    Article  CAS  Google Scholar 

  • Yan B, Zemskova M, Holder S, Chin V, Kraft A, Koskinen PJ et al. (2003). The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J Biol Chem 278: 45358–45367.

    Article  CAS  Google Scholar 

  • Yoshida A, Fukazawa M, Ushio H, Aiyoshi Y, Soeda S, Ito K . (1989). Study of cell kinetics in anaplastic thyroid carcinoma transplanted to nude mice. J Surg Oncol 41: 1–4.

    Article  CAS  Google Scholar 

  • Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T et al. (1995). Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182: 367–377.

    Article  CAS  Google Scholar 

  • Zippo A, De Robertis A, Bardelli M, Galvagni F, Oliviero S . (2004). Identification of Flk-1 target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro. Blood 103: 4536–4544.

    Article  CAS  Google Scholar 

  • Zippo A, De Robertis A, Serafini R, Oliviero S . (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9: 932–944.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIHRO1CA (089266 Lee MH), Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (Chen J), Grants-in-Aid for Cancer Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (Kobayashi M), US Department of Defense Breast Cancer Research Program of the Office of the Congressionally Directed Medical Research Programs (DOD SIDA BC062166 Yeung SJ & Lee MH) and Cancer Center Core Grant (CA16672). We thank Dr BQ Vuong for providing the pCDNA3.1-His-SOCS1 plasmid. We thank Mrs Shirley Ware-Gully for her assistance in preparing the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S C Yeung or M H Lee.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Kobayashi, M., Darmanin, S. et al. Pim-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene 28, 2581–2592 (2009). https://doi.org/10.1038/onc.2009.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.124

Keywords

This article is cited by

Search

Quick links