Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP

Abstract

TNF-related apoptosis-inducing ligand (TRAIL) is a potent inducer of cell death in several cancer cells, but many cells are resistant to TRAIL. The mechanism that determines sensitivity to TRAIL-killing is still elusive. Here we report that deletion of TAK1 kinase greatly increased activation of caspase-3 and cell death after TRAIL stimulation in keratinocytes, fibroblasts and cancer cells. Although TAK1 kinase is involved in NF-κB pathway, ablation of NF-κB did not alter sensitivity to TRAIL. We found that TRAIL could induce accumulation of reactive oxygen species (ROS) when TAK1 was deleted. Furthermore, we found that TAK1 deletion induced TRAIL-dependent downregulation of cIAP, which enhanced activation of caspase-3. These results show that TAK1 deletion facilitates TRAIL-induced cell death by activating caspase through ROS and downregulation of cIAP. Thus, inhibition of TAK1 can be an effective approach to increase TRAIL sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aggarwal BB . (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3: 745–756.

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi A . (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2: 420–430.

    CAS  PubMed  Google Scholar 

  • Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY et al. (1995). Coupling of a signal response domain in IκB alpha to multiple pathways for NF-kB activation. Mol Cell Biol 15: 2809–2818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al. (2006). The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIP(L) turnover. Cell 124: 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Bhoj V, Seth RB . (2006). Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 13: 687–692.

    Article  CAS  PubMed  Google Scholar 

  • Choo MK, Kawasaki N, Singhirunnusorn P, Koizumi K, Sato S, Akira S et al. (2006). Blockade of transforming growth factor-beta-activated kinase 1 activity enhances TRAIL-induced apoptosis through activation of a caspase cascade. Mol Cancer Ther 5: 2970–2976.

    Article  CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S . (2008). Shared principles in NF-κB signaling. Cell 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A et al. (2009). TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28: 677–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajino T, Omori E, Ishii S, Matsumoto K, Ninomiya-Tsuji J . (2007). TAK1 MAPK kinase kinase mediates transforming growth factor-β signaling by targeting SnoN oncoprotein for degradation. J Biol Chem 282: 9475–9481.

    Article  CAS  PubMed  Google Scholar 

  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . (2005). Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120: 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Lin A . (2002). NF-κB at the crossroads of life and death. Nat Immunol 3: 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Kim J-Y, Omori E, Matsumoto K, Nunez G, Ninomiya-Tsuji J . (2008a). TAK1 is a central mediator of NOD2 signaling in epidermal cells. J Biol Chem 283: 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Ricci MS, El-Deiry WS . (2008b). Mcl-1: a gateway to TRAIL sensitization. Cancer Res 68: 2062–2064.

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Suh N, Sporn M, Reed JC . (2002). An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 277: 22320–22329.

    Article  CAS  PubMed  Google Scholar 

  • Kurbanov BM, Fecker LF, Geilen CC, Sterry W, Eberle J . (2007). Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-κB but is related to downregulation of initiator caspases and DR4. Oncogene 26: 3364–3377.

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc HN, Ashkenazi A . (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10: 66–75.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X, Harran PG . (2004). A small molecule smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305: 1471–1474.

    Article  CAS  PubMed  Google Scholar 

  • Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M et al. (1999). The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J Exp Med 189: 1839–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makris C, Godfrey VL, Krahn-Senftleben G, Takahashi T, Roberts JL, Schwarz T et al. (2000). Female mice heterozygous for IKKγ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 5: 969–979.

    Article  CAS  PubMed  Google Scholar 

  • Meng XW, Lee SH, Dai H, Loegering D, Yu C, Flatten K et al. (2007). Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem 282: 29831–29846.

    Article  CAS  PubMed  Google Scholar 

  • Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J . (2001). NF-κB signals induce the expression of c-FLIP. Mol Cell Biol 21: 5299–5305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K . (1999). The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Omori E, Matsumoto K, Sanjo H, Sato S, Akira S, Smart RC et al. (2006). TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J Biol Chem 281: 19610–19617.

    Article  CAS  PubMed  Google Scholar 

  • Omori E, Morioka S, Matsumoto K, Ninomiya-Tsuji J . (2008). TAK1 regulates reactive oxygen species and cell death in keratinocytes, which Is essential for skin integrity. J Biol Chem 283: 26161–26168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J et al. (2007). Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12: 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JC . (2006). Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 3: 388–398.

    Article  CAS  PubMed  Google Scholar 

  • Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W et al. (2007). Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12: 66–80.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J et al. (2000). Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev 14: 854–862.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T et al. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6: 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  • Shim J-H, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS et al. (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19: 2668–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegmund D, Mauri D, Peters N, Juo P, Thome M, Reichwein M et al. (2001). Fas-associated death domain protein (FADD) and caspase-8 mediate up-regulation of c-Fos by Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via a FLICE inhibitory protein (FLIP)-regulated pathway. J Biol Chem 276: 32585–32590.

    Article  CAS  PubMed  Google Scholar 

  • Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB . (2003). TAK1 is Critical for IkB Kinase-mediated Activation of the NF-κB Pathway. J Mol Biol 326: 105–115.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ . (2007). Targeting death-inducing receptors in cancer therapy. Oncogene 26: 3745–3757.

    Article  CAS  PubMed  Google Scholar 

  • Varfolomeev E, Maecker H, Sharp D, Lawrence D, Renz M, Vucic D et al. (2005). Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 280: 40599–40608.

    Article  CAS  PubMed  Google Scholar 

  • Ventura JJ, Cogswell P, Flavell RA, Baldwin Jr AS, Davis RJ . (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18: 2905–2915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. (2007). IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131: 682–693.

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS . (1998). NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Du F, Wang X . (2008). TNF-α induces two distinct caspase-8 activation pathways. Cell 133: 693–703.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, El-Deiry WS . (2003). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22: 8628–8633.

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Yang BF, Asadi N, Beguinot F, Hao C . (2002). Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem 277: 25020–25025.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Akira, Karin, Ballard and Wang for materials. This work was supported by a grant (GM068812) from NIH to JN-T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Ninomiya-Tsuji.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morioka, S., Omori, E., Kajino, T. et al. TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP. Oncogene 28, 2257–2265 (2009). https://doi.org/10.1038/onc.2009.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.110

Keywords

This article is cited by

Search

Quick links