Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The gep oncogenes, Gα12 and Gα13, upregulate the transforming growth factor-β1 gene

Abstract

Transforming growth factor-β1 (TGFβ1) plays a role in neoplastic transformation and transdifferentiation. Gα12 and Gα13, referred to as the gep oncogenes, stimulate mitogenic pathways. Nonetheless, no information is available regarding their roles in the regulation of the TGFβ1 gene and the molecules linking them to gene transcription. Knockdown or knockout experiments using murine embryonic fibroblasts and hepatic stellate cells indicated that a Gα12 and Gα13 deficiency reduced constitutive, auto-stimulatory or thrombin-inducible TGFβ1 gene expression. In contrast, transfection of activated mutants of Gα12 and Gα13 enabled the knockout cells to promote TGFβ1 induction. A promoter deletion analysis suggested that activating protein 1 (AP-1) plays a role in TGFβ1 gene transactivation, which was corroborated by the observation that a deficiency of the G-proteins decreased the AP-1 activity, whereas their activation enhanced it. Moreover, mutation of the AP-1-binding site abrogated the ability of Gα12 and Gα13 to induce the TGFβ1 gene. Transfection of a dominant-negative mutant of Rho or Rac, but not Cdc42, prevented gene transactivation and decreased AP-1 activity downstream of Gα12 and Gα13. In summary, Gα12 and Gα13 regulate the expression of the TGFβ1 gene through an increase in Rho/Rac-dependent AP-1 activity, implying that the G-protein-coupled receptor (GPCR)-Gα12 pathway is involved in the TGFβ1-mediated transdifferentiation process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ankoma-Sey V, Wang Y, Dai Z . (2000). Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology 31: 141–148.

    Article  CAS  Google Scholar 

  • Bahr MJ, Vincent KJ, Arthur MJ, Fowler AV, Smart DE, Wright MC et al. (1999). Control of the tissue inhibitor of metalloproteinases-1 promoter in culture-activated rat hepatic stellate cells: regulation by activator protein-1 DNA binding proteins. Hepatology 29: 839–848.

    Article  CAS  Google Scholar 

  • Bataller R, Brenner DA . (2005). Liver fibrosis. J Clin Invest 115: 209–218.

    Article  CAS  Google Scholar 

  • Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X et al. (2000). Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology 118: 1149–1156.

    Article  CAS  Google Scholar 

  • Brown JH, Del Re DP, Sussman MA . (2006). The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98: 730–742.

    Article  CAS  Google Scholar 

  • Byun HJ, Hong IK, Kim E, Jin YJ, Jeoung DI, Hahn JH et al. (2006). A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem 281: 34833–34847.

    Article  CAS  Google Scholar 

  • Chan AM, Fleming TP, McGovern ES, Chedid M, Miki T, Aaronson SA . (1993). Expression cDNA cloning of a transforming gene encoding the wild-type Gα12 gene product. Mol Cell Biol 13: 762–768.

    Article  CAS  Google Scholar 

  • Coulouarn C, Factor VM, Thorgeirsson SS . (2008). Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 47: 2059–2067.

    Article  CAS  Google Scholar 

  • Dhanasekaran N, Dermott JM . (1996). Signaling by the G12 class of G proteins. Cell Signal 8: 235–245.

    Article  CAS  Google Scholar 

  • Dokter WH, Tuyt L, Sierdsema SJ, Esselink MT, Vellenga E . (1995). The spontaneous expression of interleukin-1β and interleukin-6 is associated with spontaneous expression of AP-1 and NF-κB transcription factor in acute myeloblastic leukemia cells. Leukemia 9: 425–432.

    CAS  PubMed  Google Scholar 

  • Fiorucci S, Antonelli E, Distrutti E, Severino B, Fiorentina R, Baldoni M et al. (2004). PAR1 antagonism protects against experimental liver fibrosis. Role of proteinase receptors in stellate cell activation. Hepatology 39: 365–375.

    Article  CAS  Google Scholar 

  • Fransvea E, Angelotti U, Antonaci S, Giannelli G . (2008). Blocking transforming growth factor-β up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology 47: 1557–1566.

    Article  CAS  Google Scholar 

  • Friedman SL . (1993). Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 328: 1828–1835.

    Article  CAS  Google Scholar 

  • Fujii T, Onohara N, Maruyama Y, Tanabe S, Kobayashi H, Fukutomi M et al. (2005). Gα12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. J Biol Chem 280: 23041–23047.

    Article  CAS  Google Scholar 

  • Gaca MD, Zhou X, Benyon RC . (2002). Regulation of hepatic stellate cell proliferation and collagen synthesis by proteinase-activated receptors. J Hepatol 36: 362–369.

    Article  CAS  Google Scholar 

  • George J, Chandrakasan G . (1996). Molecular characteristics of dimethylnitrosamine induced fibrotic liver collagen. Biochim Biophys Acta 1292: 215–222.

    Article  Google Scholar 

  • George J, Rao KR, Stern R, Chandrakasan G . (2001). Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen. Toxicology 156: 129–138.

    Article  CAS  Google Scholar 

  • Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S . (2005). Laminin-5 with transforming growth factor-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129: 1375–1383.

    Article  CAS  Google Scholar 

  • Goldsmith ZG, Dhanasekaran DN . (2007). G protein regulation of MAPK networks. Oncogene 26: 3122–3142.

    Article  CAS  Google Scholar 

  • Graupera M, Garcia-Pagan JC, Abraldes JG, Peralta C, Bragulat M, Corominola H et al. (2003). Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 37: 172–181.

    Article  CAS  Google Scholar 

  • Gu JL, Muller S, Mancino V, Offermanns S, Simon MI . (2002). Interaction of Gα12 with Gα13 and Gαq signaling pathways. Proc Natl Acad Sci USA 99: 9352–9357.

    Article  CAS  Google Scholar 

  • Jenkins SA, Grandison A, Baxter JN, Day DW, Taylor I, Shields R . (1985). A dimethylnitrosamine-induced model of cirrhosis and portal hypertension in the rat. J Hepatol 1: 489–499.

    Article  CAS  Google Scholar 

  • Kang KW, Choi SH, Ha JR, Kim CW, Kim SG . (2002a). Inhibition of dimethylnitrosamine-induced liver fibrosis by [5-(2-pyrazinyl)-4-methyl-1,2-dithiol-3-thione] (oltipraz) in rats: suppression of transforming growth factor-β1 and tumor necrosis factor-α expression. Chem Biol Interact 139: 61–77.

    Article  CAS  Google Scholar 

  • Kang KW, Choi SY, Cho MK, Lee CH, Kim SG . (2003). Thrombin induces nitric-oxide synthase via Gα12/13-coupled protein kinase C-dependent I-κBα phosphorylation and JNK-mediated I-κBα degradation. J Biol Chem 278: 17368–17378.

    Article  CAS  Google Scholar 

  • Kang KW, Kim YG, Cho MK, Bae SK, Kim CW, Lee MG et al. (2002b). Oltipraz regenerates cirrhotic liver through CCAAT/enhancer binding protein-mediated stellate cell inactivation. FASEB J 16: 1988–1990.

    Article  CAS  Google Scholar 

  • Kaufmann R, Rahn S, Pollrich K, Hertel J, Dittmar Y, Hommann M et al. (2007). Thrombin-mediated hepatocellular carcinoma cell migration: cooperative action via proteinase-activated receptors 1 and 4. J Cell Physiol 211: 699–707.

    Article  CAS  Google Scholar 

  • Kawanabe Y, Okamoto Y, Nozaki K, Hashimoto N, Miwa S, Masaki T . (2002). Molecular mechanism for endothelin-1-induced stress-fiber formation: analysis of G proteins using a mutant endothelin(A) receptor. Mol Pharmacol 61: 277–284.

    Article  CAS  Google Scholar 

  • Kelly P, Casey PJ, Meigs TE . (2007). Biologic functions of the G12 subfamily of heterotrimeric G proteins: growth, migration, and metastasis. Biochemistry 46: 6677–6687.

    Article  CAS  Google Scholar 

  • Ki SH, Choi MJ, Lee CH, Kim SG . (2007). Gα12 specifically regulates COX-2 induction by sphingosine 1-phosphate. Role for JNK-dependent ubiquitination and degradation of IκBα. J Biol Chem 282: 1938–1947.

    Article  CAS  Google Scholar 

  • Kim SJ, Glick A, Sporn MB, Roberts AB . (1989). Characterization of the promoter region of the human transforming growth factor-β1 gene. J Biol Chem 264: 402–408.

    CAS  PubMed  Google Scholar 

  • Kumar RN, Shore SK, Dhanasekaran N . (2006). Neoplastic transformation by the gep oncogene, Gα12, involves signaling by STAT3. Oncogene 25: 899–906.

    Article  CAS  Google Scholar 

  • Kuner R, Swiercz JM, Zywietz A, Tappe A, Offermanns S . (2002). Characterization of the expression of PDZ-RhoGEF, LARG and Gα12/Gα13 proteins in the murine nervous system. Eur J Neurosci 16: 2333–2341.

    Article  CAS  Google Scholar 

  • Kurose H . (2003). Gα12 and Gα13 as key regulatory mediator in signal transduction. Life Sci 74: 155–161.

    Article  CAS  Google Scholar 

  • Lee JS, Semela D, Iredale J, Shah VH . (2007). Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology 45: 817–825.

    Article  CAS  Google Scholar 

  • Mikula M, Proell V, Fischer AN, Mikulits W . (2006). Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-β dependent fashion. J Cell Physiol 209: 560–567.

    Article  CAS  Google Scholar 

  • Molteni A, Heffelfinger S, Moulder JE, Uhal B, Castellani WJ . (2006). Potential deployment of angiotensin I converting enzyme inhibitors and of angiotensin II type 1 and type 2 receptor blockers in cancer chemotherapy. Anticancer Agents Med Chem 6: 451–460.

    Article  CAS  Google Scholar 

  • Oklu R, Hesketh R . (2000). The latent transforming growth factor β binding protein (LTBP) family. Biochem J 352 (Part 3): 601–610.

    Article  CAS  Google Scholar 

  • Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F . (1997). Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26: 634–642.

    Article  CAS  Google Scholar 

  • Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A et al. (1996). Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology 110: 534–548.

    Article  CAS  Google Scholar 

  • Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H . (1999). Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA 96: 2345–2349.

    Article  CAS  Google Scholar 

  • Radhika V, Hee Ha J, Jayaraman M, Tsim ST, Dhanasekaran N . (2005). Mitogenic signaling by lysophosphatidic acid (LPA) involves Galpha12. Oncogene 24: 4597–4603.

    Article  CAS  Google Scholar 

  • Rhoades KL, Golub SH, Economou JS . (1992). The regulation of the human tumor necrosis factor α promoter region in macrophage, T cell, and B cell lines. J Biol Chem 267: 22102–22107.

    CAS  PubMed  Google Scholar 

  • Schook LB, Lockwood JF, Yang SD, Myers MJ . (1992). Dimethylnitrosamine (DMN)-induced IL-1β, TNF-α, and IL-6 inflammatory cytokine expression. Toxicol Appl Pharmacol 116: 110–116.

    Article  CAS  Google Scholar 

  • Smart DE, Green K, Oakley F, Weitzman JB, Yaniv M, Reynolds G et al. (2006). JunD is a profibrogenic transcription factor regulated by Jun N-terminal kinase-independent phosphorylation. Hepatology 44: 1432–1440.

    Article  CAS  Google Scholar 

  • Solis-Herruzo JA, Hernandez I, De la Torre P, Garcia I, Sanchez JA, Fernandez I et al. (1998). G proteins are involved in the suppression of collagen α1(I) gene expression in cultured rat hepatic stellate cells. Cell Signal 10: 173–183.

    Article  CAS  Google Scholar 

  • Vogt S, Grosse R, Schultz G, Offermanns S . (2003). Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11 . J Biol Chem 278: 28743–28749.

    Article  CAS  Google Scholar 

  • Weigert C, Sauer U, Brodbeck K, Pfeiffer A, Haring HU, Schleicher ED . (2000). AP-1 proteins mediate hyperglycemia-induced activation of the human TGF-β1 promoter in mesangial cells. J Am Soc Nephrol 11: 2007–2016.

    CAS  Google Scholar 

  • Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J . (1997). Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 389: 505–509.

    Article  CAS  Google Scholar 

  • Xu N, Bradley L, Ambdukar I, Gutkind JS . (1993). A mutant α subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci USA 90: 6741–6745.

    Article  CAS  Google Scholar 

  • Xu N, Voyno-Yasenetskaya T, Gutkind JS . (1994). Potent transforming activity of the G13 α subunit defines a novel family of oncogenes. Biochem Biophys Res Commun 201: 603–609.

    Article  CAS  Google Scholar 

  • Yamaguchi Y, Katoh H, Negishi M . (2003). N-terminal short sequences of α subunits of the G12 family determine selective coupling to receptors. J Biol Chem 278: 14936–14939.

    Article  CAS  Google Scholar 

  • Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, Tsujimoto T et al. (2007). Renin–angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem 14: 2749–2754.

    Article  CAS  Google Scholar 

  • Yue J, Mulder KM . (2000). Requirement of Ras/MAPK pathway activation by transforming growth factor beta for transforming growth factor β1 production in a Smad-dependent pathway. J Biol Chem 275: 30765–30773.

    Article  CAS  Google Scholar 

  • Zhao S, Venkatasubbarao K, Lazor JW, Sperry J, Jin C, Cao L et al. (2008). Inhibition of STAT3Tyr705 phosphorylation by Smad4 suppresses transforming growth factor β-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res 68: 4221–4228.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr SC Brooks III for helpful discussion and English editing. This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. R11-2007-107-01001-0), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S G Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Yang, J., Cho, I. et al. The gep oncogenes, Gα12 and Gα13, upregulate the transforming growth factor-β1 gene. Oncogene 28, 1230–1240 (2009). https://doi.org/10.1038/onc.2008.488

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.488

Keywords

This article is cited by

Search

Quick links