Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transforming growth factor-β1 is the predominant isoform required for breast cancer cell outgrowth in bone

Abstract

Transforming growth factor (TGF)-β signaling is a potent modulator of the invasive and metastatic behavior of breast cancer cells. Indeed, breast tumor responsiveness to TGF-β is important for the development of osteolytic bone metastases. However, the specific TGF-β isoforms that promote breast cancer outgrowth in bone is unknown. We demonstrate that expression of a TGF-β ligand trap, which neutralizes TGF-β1 and TGF-β3, in MDA-MB-231 breast cancer cells diminished their outgrowth in bone and reduced the severity of osteolytic lesion formation when compared with controls. We further show that a reduction or loss of TGF-β1 expression within the bone microenvironment of TGF-β1+/− and TGF-β1−/− mice significantly reduced the incidence of breast tumor outgrowth compared with wild-type animals. Interestingly, those tumors capable of growing within the tibiae of TGF-β1-deficient mice had upregulated expression of all three TGF-β isoforms. Finally, breast cancer cells expressing the TGF-β ligand trap showed a pronounced reduction in their ability to form osteolytic lesions when injected into the tibiae of TGF-β1+/− mice. Thus, our studies show that both host- and tumor-derived TGF-β expression plays a critical role during the establishment and outgrowth of breast cancer cells in bone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CM:

conditioned media

ECD:

extracellular domain

IL-11:

interleukin-11

PTHrP:

parathyroid hormone-related protein

TβRI:

TGF-β type I receptor

TβRII:

TGF-β type II receptor

TGF-β:

transforming growth factor β

VC:

vector control

References

  • Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM et al. (2006). Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res 66: 6714–6721.

    Article  CAS  Google Scholar 

  • Baselga J, Rothenberg ML, Tabernero J, Seoane J, Daly T, Cleverly A et al. (2008). TGF-beta signalling-related markers in cancer patients with bone metastasis. Biomarkers 13: 217–236.

    Article  CAS  Google Scholar 

  • Broussau S, Jabbour N, Lachapelle G, Durocher Y, Tom R, Transfiguracion J et al. (2008). Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol Ther 16: 500–507.

    Article  CAS  Google Scholar 

  • Coleman RE . (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12: 6243s–6249s.

    Article  Google Scholar 

  • De Crescenzo G, Hinck CS, Shu Z, Zuniga J, Yang J, Tang Y et al. (2006). Three key residues underlie the differential affinity of the TGFbeta isoforms for the TGFbeta type II receptor. J Mol Biol 355: 47–62.

    Article  CAS  Google Scholar 

  • Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G et al. (2006). The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66: 2202–2209.

    Article  CAS  Google Scholar 

  • del Re E, Babitt JL, Pirani A, Schneyer AL, Lin HY . (2004). In the absence of type III receptor, the transforming growth factor (TGF)-beta type II-B receptor requires the type I receptor to bind TGF-beta2. J Biol Chem 279: 22765–22772.

    Article  CAS  Google Scholar 

  • Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K et al. (2007). Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 98: 127–133.

    Article  CAS  Google Scholar 

  • Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T . (1999). Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 59: 3379–3386.

    CAS  PubMed  Google Scholar 

  • Geiser AG, Zeng QQ, Sato M, Helvering LM, Hirano T, Turner CH . (1998). Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone 23: 87–93.

    Article  CAS  Google Scholar 

  • Groppe J, Hinck CS, Samavarchi-Tehrani P, Zubieta C, Schuermann JP, Taylor AB et al. (2008). Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Mol Cell 29: 157–168.

    Article  CAS  Google Scholar 

  • Hering S, Isken E, Knabbe C, Janott J, Jost C, Pommer A et al. (2001a). TGFbeta1 and TGFbeta2 mRNA and protein expression in human bone samples. Exp Clin Endocrinol Diabetes 109: 217–226.

    Article  CAS  Google Scholar 

  • Hering S, Isken F, Janott J, Jost C, Pommer A, Muhr G et al. (2001b). Analysis of TGFbeta3 gene expression and protein levels in human bone and serum. Exp Clin Endocrinol Diabetes 109: 107–115.

    Article  CAS  Google Scholar 

  • Hess KR, Varadhachary GR, Taylor SH, Wei W, Raber MN, Lenzi R et al. (2006). Metastatic patterns in adenocarcinoma. Cancer 106: 1624–1633.

    Article  Google Scholar 

  • Janssens K, ten Dijke P, Janssens S, Van Hul W . (2005). Transforming growth factor-beta1 to the bone. Endocr Rev 26: 743–774.

    Article  CAS  Google Scholar 

  • Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA et al. (2002). Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277: 24571–24578.

    Article  CAS  Google Scholar 

  • Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR et al. (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102: 13909–13914.

    Article  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  Google Scholar 

  • Komesli S, Vivien D, Dutartre P . (1998). Chimeric extracellular domain type II transforming growth factor (TGF)-beta receptor fused to the Fc region of human immunoglobulin as a TGF-beta antagonist. Eur J Biochem 254: 505–513.

    Article  CAS  Google Scholar 

  • Kozlow W, Guise TA . (2005). Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10: 169–180.

    Article  Google Scholar 

  • Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al. (1993). Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90: 770–774.

    Article  CAS  Google Scholar 

  • Liao J, McCauley LK . (2006). Skeletal metastasis: Established and emerging roles of parathyroid hormone related protein (PTHrP). Cancer Metastasis Rev 25: 559–571.

    Article  CAS  Google Scholar 

  • Lopez-Casillas F, Wrana JL, Massague J . (1993). Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73: 1435–1444.

    Article  CAS  Google Scholar 

  • Manolagas SC . (1995). Role of cytokines in bone resorption. Bone 17: 63S–67S.

    Article  CAS  Google Scholar 

  • Mastro AM, Gay CV, Welch DR . (2003). The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis 20: 275–284.

    Article  CAS  Google Scholar 

  • Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115: 44–55.

    Article  CAS  Google Scholar 

  • Mourskaia AA, Northey JJ, Siegel PM . (2007). Targeting aberrant TGF-beta signaling in pre-clinical models of cancer. Anticancer Agents Med Chem 7: 504–514.

    Article  CAS  Google Scholar 

  • Moustakas A, Heldin CH . (2005). Non-Smad TGF-beta signals. J Cell Sci 118: 3573–3584.

    Article  CAS  Google Scholar 

  • Mundy GR . (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2: 584–593.

    Article  CAS  Google Scholar 

  • Northey JJ, Chmielecki J, Ngan E, Russo C, Annis MG, Muller WJ et al. (2008). Signaling through ShcA is required for TGF-{beta} and Neu/ErbB-2 induced breast cancer cell motility and invasion. Mol Cell Biol 28: 3162–3176.

    Article  CAS  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

    Article  CAS  Google Scholar 

  • Rose AA, Siegel PM . (2006). Breast cancer-derived factors facilitate osteolytic bone metastasis. Bull Cancer 93: 931–943.

    CAS  PubMed  Google Scholar 

  • Schmierer B, Hill CS . (2007). TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8: 970–982.

    Article  CAS  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M et al. (1992). Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359: 693–699.

    Article  CAS  Google Scholar 

  • Sotiriou C, Lacroix M, Lespagnard L, Larsimont D, Paesmans M, Body JJ . (2001). Interleukins-6 and -11 expression in primary breast cancer and subsequent development of bone metastases. Cancer Lett 169: 87–95.

    Article  CAS  Google Scholar 

  • Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR et al. (1998). Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4: 802–807.

    Article  CAS  Google Scholar 

  • Wang XF, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA . (1991). Expression cloning and characterization of the TGF-beta type III receptor. Cell 67: 797–805.

    Article  CAS  Google Scholar 

  • Wrana JL, Attisano L, Wieser R, Ventura F, Massague J . (1994). Mechanism of activation of the TGF-beta receptor. Nature 370: 341–347.

    Article  CAS  Google Scholar 

  • Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103: 197–206.

    Article  CAS  Google Scholar 

  • Yoneda T, Hiraga T . (2005). Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun 328: 679–687.

    Article  CAS  Google Scholar 

  • Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R . (2001). A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16: 1486–1495.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Joan Massagué for providing the MDA-MB-231 derivative cell populations used in this study. We are grateful to Caterina Russo for providing excellent technical support, and acknowledge the McGill Centre for Bone and Periodontal Research for routine histological services. We thank Dr Ursini-Siegel, Dr Le Nihouannen and members of the Siegel laboratory for thoughtful discussions and critical reading of the manuscript. This study was supported by grants from the Canadian Breast Cancer Research Alliance (nos. 015333 and MOP-84386). AA Mourskaia is supported by a studentship from Fonds de la Recherche en Santé du Québec and PM Siegel is a research scientist of the National Cancer Institute of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Siegel.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourskaia, A., Dong, Z., Ng, S. et al. Transforming growth factor-β1 is the predominant isoform required for breast cancer cell outgrowth in bone. Oncogene 28, 1005–1015 (2009). https://doi.org/10.1038/onc.2008.454

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.454

Keywords

This article is cited by

Search

Quick links