Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

XB130, a tissue-specific adaptor protein that couples the RET/PTC oncogenic kinase to PI 3-kinase pathway

Abstract

XB130 is a recently cloned 130 kDa-adaptor protein and Src kinase substrate, structurally similar to actin-filament-associated protein. Here we show that XB130 is predominantly expressed in the thyroid. Given that XB130 is a thyroid-specific tyrosine kinase substrate, we asked whether it is targeted by RET/PTC, a genetically rearranged, constitutively active, thyroid-specific tyrosine kinase that plays a pathogenic role in papillary thyroid cancer. RET/PTC induced robust tyrosine phosphorylation of XB130, which promoted its subsequent association with the p85α subunit of phosphatidylinositol 3-kinase (PI 3-kinase). We identified tyrosine 54 of XB130 as the major target of RET/PTC-mediated phosphorylation and a critical binding site for the SH2 domains of p85α. Importantly, downregulation of XB130 in TPC1 papillary thyroid cancer cells, harboring the RET/PTC1 kinase, strongly reduced Akt activity without altering ERK1/2 phosphorylation, and concomitantly inhibited cell-cycle progression and survival in suspension. In conclusion, XB130 is a novel substrate of the RET/PTC kinase that links RET/PTC signaling to PI 3-kinase activation, and thereby plays an important role in sustaining proliferation and survival of thyroid tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15: 6541–6551.

    Article  CAS  Google Scholar 

  • Arighi E, Borrello MG, Sariola H . (2005). RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 16: 441–467.

    Article  CAS  Google Scholar 

  • Backer JM, Myers Jr MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M et al. (1992). Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11: 3469–3479.

    Article  CAS  Google Scholar 

  • Besset V, Scott RP, Ibanez CF . (2000). Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275: 39159–39166.

    Article  CAS  Google Scholar 

  • Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G et al. (2002). ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 62: 7284–7290.

    CAS  PubMed  Google Scholar 

  • Carpenter CL, Auger KR, Chanudhuri M, Yoakim M, Schaffhausen B, Shoelson S et al. (1993). Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268: 9478–9483.

    CAS  PubMed  Google Scholar 

  • Castellone MD, Cirafici AM, De Vita G, De Falco V, Malorni L, Tallini G et al. (2003). Ras-mediated apoptosis of PC CL 3 rat thyroid cells induced by RET/PTC oncogenes. Oncogene 22: 246–255.

    Article  CAS  Google Scholar 

  • De Falco V, Guarino V, Malorni L, Cirafici AM, Troglio F, Erreni M et al. (2005). RAI(ShcC/N-Shc)-dependent recruitment of GAB 1 to RET oncoproteins potentiates PI 3-K signalling in thyroid tumors. Oncogene 24: 6303–6313.

    Article  CAS  Google Scholar 

  • de Martimprey H, Bertrand JR, Fusco A, Santoro M, Couvreur P, Vauthier C et al. (2008). siRNA nanoformulation against the ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res 36: e2.

    Article  Google Scholar 

  • Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT . (1991). cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 65: 75–82.

    Article  CAS  Google Scholar 

  • Flynn DC, Leu TH, Reynolds AB, Parsons JT . (1993). Identification and sequence analysis of cDNAs encoding a 110-kilodalton actin filament-associated pp60src substrate. Mol Cell Biol 13: 7892–7900.

    Article  CAS  Google Scholar 

  • Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D et al. (2005). Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24: 6646–6656.

    Article  CAS  Google Scholar 

  • Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I et al. (1990). PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60: 557–563.

    Article  CAS  Google Scholar 

  • Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S et al. (2004). Conversion of mechanical force into biochemical signaling. J Biol Chem 279: 54793–54801.

    Article  CAS  Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW . (1994). Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371: 168–170.

    Article  CAS  Google Scholar 

  • Haslam RJ, Koide HB, Hemmings BA . (1993). Pleckstrin domain homology. Nature 363: 309–310.

    Article  CAS  Google Scholar 

  • Hayashi H, Ichihara M, Iwashita T, Murakami H, Shimono Y, Kawai K et al. (2000). Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 19: 4469–4475.

    Article  CAS  Google Scholar 

  • Hemmings BA . (1997). PtdIns(3,4,5)P3 gets its message across. Science 277: 534.

    Article  CAS  Google Scholar 

  • Iavarone C, Acunzo M, Carlomagno F, Catania A, Melillo RM, Carlomagno SM et al. (2006). Activation of the Erk8 mitogen-activated protein (MAP) kinase by RET/PTC3, a constitutively active form of the RET proto-oncogene. J Biol Chem 281: 10567–10576.

    Article  CAS  Google Scholar 

  • Iwashita T, Asai N, Murakami H, Matsuyama M, Takahashi M . (1996). Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene 12: 481–487.

    CAS  Google Scholar 

  • Jung HS, Kim DW, Jo YS, Chung HK, Song JH, Park JS et al. (2005). Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases. Mol Endocrinol 19: 2748–2759.

    Article  CAS  Google Scholar 

  • Kaplan DR, Miller FD . (1997). Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9: 213–221.

    Article  CAS  Google Scholar 

  • Knauf JA, Kuroda H, Basu S, Fagin JA . (2003). RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 22: 4406–4412.

    Article  CAS  Google Scholar 

  • Lodyga M, Bai XH, Mourgeon E, Han B, Keshavjee S, Liu M . (2002). Molecular cloning of actin filament-associated protein: a putative adaptor in stretch-induced Src activation. Am J Physiol Lung Cell Mol Physiol 283: L265–L274.

    Article  CAS  Google Scholar 

  • Maeda K, Murakami H, Yoshida R, Ichihara M, Abe A, Hirai M et al. (2004). Biochemical and biological responses induced by coupling of Gab1 to phosphatidylinositol 3-kinase in RET-expressing cells. Biochem Biophys Res Commun 323: 345–354.

    Article  CAS  Google Scholar 

  • Mai KT, Vaccani JP, Thomas J, Odell PF . (2001). Immunostaining for ret oncogene proteins in papillary thyroid carcinoma: a correlation of ret immunoreactivity and potential of lymph node metastasis. Thyroid 11: 859–863.

    Article  CAS  Google Scholar 

  • Mariggio S, Filippi BM, Iurisci C, Dragani LK, De Falco V, Santoro M et al. (2007). Cytosolic phospholipase A2 alpha regulates cell growth in RET/PTC-transformed thyroid cells. Cancer Res 67: 11769–11778.

    Article  CAS  Google Scholar 

  • Marte BM, Downward J . (1997). PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22: 355–358.

    Article  CAS  Google Scholar 

  • Melillo RM, Carlomagno F, De Vita G, Formisano P, Vecchio G, Fusco A et al. (2001). The insulin receptor substrate (IRS)-1 recruits phosphatidylinositol 3-kinase to Ret: evidence for a competition between Shc and IRS-1 for the binding to Ret. Oncogene 20: 209–218.

    Article  CAS  Google Scholar 

  • Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G et al. (2005). The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115: 1068–1081.

    Article  CAS  Google Scholar 

  • Miyagi E, Braga-Basaria M, Hardy E, Vasko V, Burman KD, Jhiang S et al. (2004). Chronic expression of RET/PTC 3 enhances basal and insulin-stimulated PI3 kinase/AKT signaling and increases IRS-2 expression in FRTL-5 thyroid cells. Mol Carcinog 41: 98–107.

    Article  CAS  Google Scholar 

  • Pelicci G, Troglio F, Bodini A, Melillo RM, Pettirossi V, Coda L et al. (2002). The neuron-specific Rai (ShcC) adaptor protein inhibits apoptosis by coupling Ret to the phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 22: 7351–7363.

    Article  CAS  Google Scholar 

  • Pierotti MA, Santoro M, Jenkins RB, Sozzi G, Bongarzone I, Grieco M et al. (1992). Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 89: 1616–1620.

    Article  CAS  Google Scholar 

  • Rordorf-Nikolic T, Van Horn DJ, Chen D, White MF, Backer JM . (1995). Regulation of phosphatidylinositol 3′-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J Biol Chem 270: 3662–3666.

    Article  CAS  Google Scholar 

  • Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G et al. (1996). Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12: 1821–1826.

    CAS  Google Scholar 

  • Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M et al. (1994a). Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene 9: 509–516.

    CAS  Google Scholar 

  • Santoro M, Melillo RM, Grieco M, Berlingieri MT, Vecchio G, Fusco A . (1993). The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ 4: 77–84.

    CAS  PubMed  Google Scholar 

  • Santoro M, Wong WT, Aroca P, Santos E, Matoskova B, Grieco M et al. (1994b). An epidermal growth factor receptor/ret chimera generates mitogenic and transforming signals: evidence for a ret-specific signaling pathway. Mol Cell Biol 14: 663–675.

    Article  CAS  Google Scholar 

  • Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H . (1988). Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3: 571–578.

    CAS  PubMed  Google Scholar 

  • Xu J, Bai XH, Lodyga M, Han B, Xiao H, Keshavjee S et al. (2007). XB130, a novel adaptor protein for signal transduction. J Biol Chem 282: 16401–16412.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr B Han and Dr D Winer for technical assistance. We thank AJ Ryan, AstraZeneca for the ZD6474 inhibitor. We also thank Dr S Asa and JM Hershman for human thyroid cell lines, Dr G Pelicci for GST-fusion proteins and Dr M Chiariello for the Src mutant. This work was supported by operating grants (MOP-13270, MOP-42546) from Canadian Institutes of Health Research, a grant from the Italian Association for Cancer Research, MIUR, Alleanza contro iL Cancro and the European Union Contract FP6-36495 (GENRISK-T).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Santoro or M Liu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodyga, M., De Falco, V., Bai, Xh. et al. XB130, a tissue-specific adaptor protein that couples the RET/PTC oncogenic kinase to PI 3-kinase pathway. Oncogene 28, 937–949 (2009). https://doi.org/10.1038/onc.2008.447

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.447

Keywords

This article is cited by

Search

Quick links