Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer

Abstract

Regulation of the androgen receptor (AR) is critical to prostate cancer (PCa) development; therefore, AR is the first line therapeutic target for disseminated tumors. Cell cycle-dependent accumulation of cyclin D1 negatively modulates the transcriptional regulation of AR through discrete, CDK4-independent mechanisms. The transcriptional corepressor function of cyclin D1 resides within a defined motif termed repressor domain (RD), and it was hypothesized that this motif could be utilized as a platform to develop new strategies for blocking AR function. Here, we demonstrate that expression of the RD peptide is sufficient to disrupt AR transcriptional activation of multiple, prostate-specific AR target genes. Importantly, these actions are sufficient to specifically inhibit S-phase progression in AR-positive PCa cells, but not in AR-negative cells or tested AR-positive cells of other lineages. As expected, impaired cell cycle progression resulted in a suppression of cell doubling. Additionally, cell death was observed in AR-positive cells that maintain androgen dependence and in a subset of castrate-resistant PCa cells, dependent on Akt activation status. Lastly, the ability of RD to cooperate with existing hormone therapies was examined, which revealed that RD enhanced the cellular response to an AR antagonist. Together, these data demonstrate that RD is sufficient to disrupt AR-dependent transcriptional and proliferative responses in PCa, and can enhance efficacy of AR antagonists, thus establishing the impetus for development of RD-based mimetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agus DB, Cordon-Cardo C, Fox W, Drobnjak M, Koff A, Golde DW et al. (1999). Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 91: 1869–1876.

    Article  CAS  PubMed  Google Scholar 

  • Balk SP, Knudsen KE . (2008). AR, the cell cycle, and prostate cancer. Nucl Recept Signal 6: e001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bienvenu F, Gascan H, Coqueret O . (2001). Cyclin D1 represses STAT3 activation through a Cdk4-independent mechanism. J Biol Chem 276: 16840–16847.

    Article  CAS  PubMed  Google Scholar 

  • Birrell SN, Bentel JM, Hickey TE, Ricciardelli C, Weger MA, Horsfall DJ et al. (1995). Androgens induce divergent proliferative responses in human breast cancer cell lines. J Steroid Biochem Mol Biol 52: 459–467.

    Article  CAS  PubMed  Google Scholar 

  • Burd CJ, Petre CE, Moghadam H, Wilson EM, Knudsen KE . (2005). Cyclin D1 binding to the androgen receptor (AR) NH2-terminal domain inhibits activation function 2 association and reveals dual roles for AR corepression. Mol Endocrinol 19: 607–620.

    Article  CAS  PubMed  Google Scholar 

  • Burnstein KL . (2005). Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem 95: 657–669.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Okayama H . (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7: 2745–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS . (2006). Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res 66: 10613–10620.

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Sexl V, Sherr CJ, Roussel MF . (1998). Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci USA 95: 1091–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM . (2007). Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 120: 719–733.

    Article  CAS  PubMed  Google Scholar 

  • Coqueret O . (2002). Linking cyclins to transcriptional control. Gene 299: 35–55.

    Article  CAS  PubMed  Google Scholar 

  • Davies MA, Koul D, Dhesi H, Berman R, McDonnell TJ, McConkey D et al. (1999). Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells by MMAC/PTEN. Cancer Res 59: 2551–2556.

    CAS  PubMed  Google Scholar 

  • Esquenet M, Swinnen JV, Heyns W, Verhoeven G . (1995). Triiodothyronine modulates growth, secretory function and androgen receptor concentration in the prostatic carcinoma cell line LNCaP. Mol Cell Endocrinol 109: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Ewen ME, Lamb J . (2004). The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 10: 158–162.

    Article  CAS  PubMed  Google Scholar 

  • Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM . (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Feldman BJ, Feldman D . (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Franke TF, Kaplan DR, Cantley LC . (1997). PI3K: downstream AKTion blocks apoptosis. Cell 88: 435–437.

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Rao M, Bouras T, Wang C, Wu K, Zhang X et al. (2005). Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J Biol Chem 280: 16934–16941.

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG . (2004). Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145: 5439–5447.

    Article  CAS  PubMed  Google Scholar 

  • Ganter B, Fu S, Lipsick JS . (1998). D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. EMBO J 17: 255–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh PM, Malik SN, Bedolla RG, Wang Y, Mikhailova M, Prihoda TJ et al. (2005). Signal transduction pathways in androgen-dependent and -independent prostate cancer cell proliferation. Endocr Relat Cancer 12: 119–134.

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk AR, Doan A, Nakamura JL, Haas-Kogan DA, Stokoe D . (2005). Inhibition of phosphatidylinositol-3-kinase causes cell death through a protein kinase B (PKB)-dependent mechanism and growth arrest through a PKB-independent mechanism. Int J Radiat Oncol Biol Phys 61: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  • Gregory CW, Johnson Jr RT, Mohler JL, French FS, Wilson EM . (2001). Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 61: 2892–2898.

    CAS  PubMed  Google Scholar 

  • Hadaschik BA, Gleave ME . (2007). Therapeutic options for hormone-refractory prostate cancer in 2007. Urol Oncol 25: 413–419.

    Article  CAS  PubMed  Google Scholar 

  • Hess-Wilson JK, Daly HK, Zagorski WA, Montville CP, Knudsen KE . (2006). Mitogenic action of the androgen receptor sensitizes prostate cancer cells to taxane-based cytotoxic insult. Cancer Res 66: 11998–12008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Gilkes DM, Chen J . (2007). Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res 67: 8810–8817.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Sherr CJ . (1998). Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol Cell Biol 18: 1590–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James MK, Ray A, Leznova D, Blain SW . (2008). Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol 28: 498–510.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . (2007). Cancer statistics, 2007. CA Cancer J Clin 57: 43–66.

    Article  PubMed  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW . (1979). Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16–23.

    CAS  PubMed  Google Scholar 

  • Kato A, Ota S, Bamba H, Wong RM, Ohmura E, Imai Y et al. (1998). Regulation of cyclin D-dependent kinase activity in rat liver regeneration. Biochem Biophys Res Commun 245: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KE . (2006). The cyclin D1b splice variant: an old oncogene learns new tricks. Cell Div 1: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knudsen KE, Arden KC, Cavenee WK . (1998). Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 273: 20213–20222.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KE, Cavenee WK, Arden KC . (1999). D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 59: 2297–2301.

    CAS  PubMed  Google Scholar 

  • Li J, Fu J, Toumazou C, Yoon HG, Wong J . (2006). A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin. Mol Endocrinol 20: 776–785.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lin Q, Wang W, Wade P, Wong J . (2002). Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 16: 687–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilja H, Ulmert D, Vickers AJ . (2008). Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8: 268–278.

    Article  CAS  PubMed  Google Scholar 

  • Lin HM, Zhao L, Cheng SY . (2002). Cyclin D1 is a ligand-independent co-repressor for thyroid hormone receptors. J Biol Chem 277: 28733–28741.

    Article  CAS  PubMed  Google Scholar 

  • Locke JA, Guns ES, Lubik AA, Adomat HH, Hendy SC, Wood CA et al. (2008). Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 68: 6407–6415.

    Article  CAS  PubMed  Google Scholar 

  • Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF et al. (1992). Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Maucher A, von Angerer E . (1993). Antiproliferative activity of casodex (ICI 176.334) in hormone-dependent tumours. J Cancer Res Clin Oncol 119: 669–674.

    Article  CAS  PubMed  Google Scholar 

  • McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR . (1999). Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59: 4291–4296.

    CAS  PubMed  Google Scholar 

  • Mehra R, Han B, Tomlins SA, Wang L, Menon A, Wasco MJ et al. (2007a). Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res 67: 7991–7995.

    Article  CAS  PubMed  Google Scholar 

  • Mehra R, Tomlins SA, Shen R, Nadeem O, Wang L, Wei JT et al. (2007b). Comprehensive assessment of TMPRSS2 and ETS family gene aberrations in clinically localized prostate cancer. Mod Pathol 20: 538–544.

    Article  CAS  PubMed  Google Scholar 

  • Minamiguchi K, Kawada M, Ohba S, Takamoto K, Ishizuka M . (2004). Ectopic expression of the amino-terminal peptide of androgen receptor leads to androgen receptor dysfunction and inhibition of androgen receptor-mediated prostate cancer growth. Mol Cell Endocrinol 214: 175–187.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS et al. (2008). Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68: 4447–4454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullany LK, White P, Hanse EA, Nelsen CJ, Goggin MM, Mullany JE et al. (2008). Distinct proliferative and transcriptional effects of the D-type cyclins in vivo. Cell Cycle 7: 2215–2224.

    Article  CAS  PubMed  Google Scholar 

  • Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J et al. (1997). Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17: 5338–5347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olshavsky NA, Groh EM, Comstock CE, Morey LM, Wang Y, Revelo MP et al. (2008). Cyclin D3 action in androgen receptor regulation and prostate cancer. Oncogene 27: 3111–3121.

    Article  CAS  PubMed  Google Scholar 

  • Parry D, Mahony D, Wills K, Lees E . (1999). Cyclin D-CDK subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. Mol Cell Biol 19: 1775–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J et al. (2007). TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 31: 882–888.

    Article  PubMed  Google Scholar 

  • Petre CE, Wetherill YB, Danielsen M, Knudsen KE . (2002). Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem 277: 2207–2215.

    Article  CAS  PubMed  Google Scholar 

  • Petre-Draviam CE, Cook SL, Burd CJ, Marshall TW, Wetherill YB, Knudsen KE . (2003). Specificity of cyclin D1 for androgen receptor regulation. Cancer Res 63: 4903–4913.

    CAS  PubMed  Google Scholar 

  • Petre-Draviam CE, Williams EB, Burd CJ, Gladden A, Moghadam H, Meller J et al. (2005). A central domain of cyclin D1 mediates nuclear receptor corepressor activity. Oncogene 24: 431–444.

    Article  CAS  PubMed  Google Scholar 

  • Petrylak DP . (2005). The current role of chemotherapy in metastatic hormone-refractory prostate cancer. Urology 65: 3–7; discussion 7–8.

    Article  PubMed  Google Scholar 

  • Pienta KJ, Bradley D . (2006). Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12: 1665–1671.

    Article  CAS  PubMed  Google Scholar 

  • Quayle SN, Hare H, Delaney AD, Hirst M, Hwang D, Schein JE et al. (2007a). Novel expressed sequences identified in a model of androgen independent prostate cancer. BMC Genomics 8: 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quayle SN, Mawji NR, Wang J, Sadar MD . (2007b). Androgen receptor decoy molecules block the growth of prostate cancer. Proc Natl Acad Sci USA 104: 1331–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar-Sagi D, Roussel MF et al. (1993). Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7: 1559–1571.

    Article  CAS  PubMed  Google Scholar 

  • Reutens AT, Fu M, Wang C, Albanese C, McPhaul MJ, Sun Z et al. (2001). Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner. Mol Endocrinol 15: 797–811.

    Article  CAS  PubMed  Google Scholar 

  • Rundlett SE, Wu XP, Miesfeld RL . (1990). Functional characterizations of the androgen receptor confirm that the molecular basis of androgen action is transcriptional regulation. Mol Endocrinol 4: 708–714.

    Article  CAS  PubMed  Google Scholar 

  • Salesi N, Carlini P, Ruggeri EM, Ferretti G, Bria E, Cognetti F . (2005). Prostate cancer: the role of hormonal therapy. J Exp Clin Cancer Res 24: 175–180.

    CAS  PubMed  Google Scholar 

  • Shand RL, Gelmann EP . (2006). Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol 16: 123–131.

    Article  PubMed  Google Scholar 

  • Sharifi N, Gulley JL, Dahut WL . (2005). Androgen deprivation therapy for prostate cancer. JAMA 294: 238–244.

    Article  CAS  PubMed  Google Scholar 

  • Sharifi N, Steinman RA . (2002). Targeted chemotherapy: chronic myelogenous leukemia as a model. J Mol Med 80: 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Shen MM, Abate-Shen C . (2007). Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res 67: 6535–6538.

    Article  CAS  PubMed  Google Scholar 

  • Skapek SX, Rhee J, Spicer DB, Lassar AB . (1995). Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267: 1022–1024.

    Article  CAS  PubMed  Google Scholar 

  • Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. (2006). Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66: 2815–2825.

    Article  CAS  PubMed  Google Scholar 

  • Subbarayan V, Xu XC, Kim J, Yang P, Hoque A, Sabichi AL et al. (2005). Inverse relationship between 15-lipoxygenase-2 and PPAR-gamma gene expression in normal epithelia compared with tumor epithelia. Neoplasia 7: 280–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS et al. (2007). Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448: 595–599.

    Article  CAS  PubMed  Google Scholar 

  • Walcott JL, Merry DE . (2002). Ligand promotes intranuclear inclusions in a novel cell model of spinal and bulbar muscular atrophy. J Biol Chem 277: 50855–50859.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Li Z, Lu Y, Du R, Katiyar S, Yang J et al. (2006). Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci USA 103: 11567–11572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Pattabiraman N, Zhou JN, Fu M, Sakamaki T, Albanese C et al. (2003). Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol Cell Biol 23: 6159–6173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J et al. (2005). The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J 388: 967–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CI, Zhou ZX, Sar M, Wilson EM . (1993). Steroid requirement for androgen receptor dimerization and DNA binding. Modulation by intramolecular interactions between the NH2-terminal and steroid-binding domains. J Biol Chem 268: 19004–19012.

    CAS  PubMed  Google Scholar 

  • Xu Y, Chen SY, Ross KN, Balk SP . (2006). Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res 66: 7783–7792.

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H et al. (2006). Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124: 615–629.

    Article  CAS  PubMed  Google Scholar 

  • Zwijsen RM, Buckle RS, Hijmans EM, Loomans CJ, Bernards R . (1998). Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev 12: 3488–3498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the K Knudsen lab for critical input, especially SM Godoy Tundidor; S Schwemberger, S Fox and M Faradaugh for technical assistance, and the E Knudsen laboratory for commentary. This work was supported by NIH grants CA099996 and CA116777 (to KEK); CA015776, CA062269, CA112532 (to SMH). LMM was supported by training grant T32-CA117846.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K E Knudsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiewer, M., Morey, L., Burd, C. et al. Cyclin D1 repressor domain mediates proliferation and survival in prostate cancer. Oncogene 28, 1016–1027 (2009). https://doi.org/10.1038/onc.2008.446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.446

Keywords

This article is cited by

Search

Quick links