Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1

Abstract

Increased levels of enhancer of zeste homolog 2 (EZH2), a critical regulator of cellular memory, are associated with negative estrogen receptor (ER) expression and disease progression in breast cancer. High levels of EZH2 signal the presence of metastasis and poor outcome in breast cancer patients. To test the hypothesis that deregulation of EZH2 contributes to ER-negative breast cancer progression, EZH2 expression was inhibited in ER-negative breast cancer cells MDA-MB-231 and CAL51 using a lentivirus system. EZH2 knockdown decreased proliferation and delayed the G2/M cell-cycle transition, although not affecting apoptosis. In vivo, EZH2 downregulation significantly decreased breast xenograft growth and improved survival. EZH2 knockdown upregulated BRCA1 protein. Of note, BRCA1 knockdown was sufficient to rescue the effects of EZH2 downregulation on proliferation, G2/M arrest, and on the levels of hyperphosphorylated mitotic Cdc25C and Cyclin B1 proteins, crucial for entry into mitosis. Invasive ER-negative breast carcinomas show significant overexpression of EZH2 and downregulation of BRCA1 proteins. Taken together, we show that EZH2 is important in ER-negative breast cancer growth in vivo and in vitro, and that BRCA1 is required for the proliferative effects of EZH2. Blockade of EZH2 may provide a prime target to prevent and/or halt ER-negative breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • American Cancer Society (2008). http://www.cancer.org/docroot/STT/content/STT_1x_Breast_Cancer_Facts__Figures_2007-2008.asp.

  • Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. (2006). EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24: 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Bae I, Rih JK, Kim HJ, Kang HJ, Haddad B, Kirilyuk A et al. (2005). BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle 4: 1641–1666.

    Article  CAS  PubMed  Google Scholar 

  • Bonnet J, Mayonove P, Morris MC . (2008). Differential phosphorylation of Cdc25C phosphatase in mitosis. Biochem Biophys Res Commun 370: 483–488.

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K . (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22: 5323–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C et al. (2003). Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat Cell Biol 5: 545–551.

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  • Collett K, Eide GE, Arnes J, Stefansson IM, Eide J, Braaten A et al. (2006). Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res 12: 1168–1174.

    Article  CAS  PubMed  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ . (1999). Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166.

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Erdmann C, Chinnaiyan AM, Merajver SD, Kleer CG . (2006). Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res 66: 4095–4099.

    Article  CAS  PubMed  Google Scholar 

  • Dunphy WG . (1994). The decision to enter mitosis. Trends Cell Biol 4: 202–207.

    Article  CAS  PubMed  Google Scholar 

  • Ellis M, Hayes D, Lippman M . (2000). Treatment of metastatic disease. In: Harris J, Lippman ME, Morrow M (eds). Diseases of the Breast. Lippincott-Raven: Philadelpha, pp 749–798.

    Google Scholar 

  • Elstrodt F, Hollestelle A, Nagel JH, Gorin M, Wasielewski M, van den Ouweland A et al. (2006). BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer Res 66: 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Du L, Stone AA, Gilbert KM, Chambers TC . (2000). Modulation of mitogen-activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent persistent forms of normal fluctuations at G2–M1. Cancer Res 60: 6403–6407.

    CAS  PubMed  Google Scholar 

  • Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N et al. (2003). Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 95: 1482–1485.

    Article  CAS  PubMed  Google Scholar 

  • Hayes DF, Isaacs C, Stearns V . (2001). Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia 6: 375–392.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann I, Clarke PR, Marcote MJ, Karsenti E, Draetta G . (1993). Phosphorylation and activation of human cdc25-C by cdc2–cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J 12: 53–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . (1999a). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397: 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . (1999b). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13: 2678–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R et al. (2004). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18: 1592–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100: 11606–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D . (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16: 2893–2905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A et al. (1997). Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J 16: 3219–3232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S et al. (2005). Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11: 5175–5180.

    Article  CAS  PubMed  Google Scholar 

  • MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH et al. (2000). BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 275: 2777–2785.

    Article  CAS  PubMed  Google Scholar 

  • Mullan PB, Quinn JE, Harkin DP . (2006). The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25: 5854–5863.

    Article  CAS  PubMed  Google Scholar 

  • Narod SA, Foulkes WD . (2004). BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4: 665–676.

    Article  CAS  PubMed  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277: 1501–1505.

    Article  CAS  PubMed  Google Scholar 

  • Ringrose L, Paro R . (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413–443.

    Article  CAS  PubMed  Google Scholar 

  • Roshak AK, Capper EA, Imburgia C, Fornwald J, Scott G, Marshall LA . (2000). The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12: 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Satijn DP, Otte AP . (1999). Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim Biophys Acta 1447: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H et al. (2007). Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 27: 5105–5119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits VA, Medema RH . (2001). Checking out the G(2)/M transition. Biochim Biophys Acta 1519: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Strausfeld U, Fernandez A, Capony JP, Girard F, Lautredou N, Derancourt J et al. (1994). Activation of p34cdc2 protein kinase by microinjection of human cdc25C into mammalian cells. Requirement for prior phosphorylation of cdc25C by p34cdc2 on sites phosphorylated at mitosis. J Biol Chem 269: 5989–6000.

    CAS  PubMed  Google Scholar 

  • Su IH, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R et al. (2005). Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 121: 425–436.

    Article  CAS  PubMed  Google Scholar 

  • Tonini T, Bagella L, D'Andrilli G, Claudio PP, Giordano A . (2004). Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene 23: 4930–4937.

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Tutt A, Ashworth A . (2004). Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4: 814–819.

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D et al. (2007). BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26: 2126–2132.

    Article  CAS  PubMed  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  • Venkitaraman AR . (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108: 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Wilson CA, Ramos L, Villasenor MR, Anders KH, Press MF, Clarke K et al. (1999). Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat Genet 21: 236–240.

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Kim S, Kastan MB . (2001). Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21: 3445–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH . (2005). BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 24: 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa K, Ogawa T, Baer R, Hemmi H, Honda K, Yamauchi A et al. (2000). Abnormal expression of BRCA1 and BRCA1-interactive DNA-repair proteins in breast carcinomas. Int J Cancer 88: 28–36.

    Article  CAS  PubMed  Google Scholar 

  • Yuli C, Shao N, Rao R, Aysola P, Reddy V, Oprea-llies G et al. (2007). BRCA1a has antitumor activity in TN breast, ovarian and prostate cancers. Oncogene 26: 6031–6037.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Arul Chinnaiyan for the EZH2 plasmid, and Tracey Filzen for technical support. We thank Robin Kunkel for assistance with artwork. We thank the University of Michigan Vector Core for virus generation. This work was supported by NIH grants CA090876 (CGK), CA107469 (CGK), CA77612 (SDM), a grant from the Avon Foundation (CGK), a grant from the Burroughs Wellcome Fund (SDM) and a grant from the Department of Defense Breast Cancer Research Program (ACV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C G Kleer.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, M., Li, X., Toy, K. et al. Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1. Oncogene 28, 843–853 (2009). https://doi.org/10.1038/onc.2008.433

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.433

Keywords

This article is cited by

Search

Quick links