Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage

Abstract

The promyelocytic leukemia (PML) tumor suppressor protein, a central regulator of cell proliferation and apoptosis, is frequently fused to the retinoic acid receptor-α (RARα) in acute PML. Here we show the interaction of PML with another tumor suppressor protein, the serine/threonine kinase homeodomain-interacting protein kinase (HIPK2). In response to DNA damage, HIPK2 phosphorylates PML at serines 8 and 38. Although HIPK2-mediated phosphorylation of PML occurs early during the DNA damage response, the oncogenic PML-RARα fusion protein is phosphorylated with significantly delayed kinetics. DNA damage or HIPK2 expression leads to the stabilization of PML and PML-RARα proteins. The N-terminal phosphorylation sites contribute to the DNA damage-induced PML SUMOylation and are required for the ability of PML to cooperate with HIPK2 for the induction of cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bernardi R, Pandolfi PP . (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8: 1006–1016.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP . (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6: 665–672.

    Article  CAS  PubMed  Google Scholar 

  • Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A . (2002). Deconstructing PML-induced premature senescence. EMBO J 21: 3358–3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert FM, Hendzel MJ, Bazett-Jones DP . (2000). Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148: 283–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borden KL . (2008). Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? Biochim Biophys Acta 1783: 2145–2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzado MA, Renner F, Roscic A, Schmitz ML . (2007). HIPK2: a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 6: 139–143.

    Article  CAS  PubMed  Google Scholar 

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4: 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Dauth I, Kruger J, Hofmann TG . (2007). Homeodomain-interacting protein kinase 2 is the ionizing radiation-activated p53 serine 46 kinase and is regulated by ATM. Cancer Res 67: 2274–2279.

    Article  CAS  PubMed  Google Scholar 

  • de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G et al. (2004). PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13: 523–535.

    Article  CAS  PubMed  Google Scholar 

  • de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . (1991). The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Bazett-Jones DP . (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26: 963–977.

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Ching RW, Ahmed K, Jalali F, Tse KC, Bristow RG et al. (2006). Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR. J Cell Biol 175: 55–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Stefano V, Blandino G, Sacchi A, Soddu S, D'Orazi G . (2004). HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function. Oncogene 23: 5185–5192.

    Article  CAS  PubMed  Google Scholar 

  • Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K et al. (2000). Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 19: 6185–6195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gresko E, Roscic A, Ritterhoff S, Vichalkovski A, del Sal G, Schmitz ML . (2006). Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J 25: 1883–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa F, Privalsky ML . (2004). Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 5: 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Keusch JJ, Oberstein SA, Hennekam RC, Hofsteenge J . (2008). Peters Plus syndrome is a new congenital disorder of glycosylation and involves defective omicron-glycosylation of thrombospondin type 1 repeats. J Biol Chem 283: 7354–7360.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. (2008). PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453: 1072–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamitani T, Nguyen HP, Kito K, Fukuda-Kamitani T, Yeh ET . (1998). Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J Biol Chem 273: 3117–3120.

    Article  CAS  PubMed  Google Scholar 

  • Kramer OH, Muller S, Buchwald M, Reichardt S, Heinzel T . (2008). Mechanism for ubiquitylation of the leukemia fusion proteins AML1-ETO and PML-RARalpha. FASEB J 22: 1369–1379.

    Article  PubMed  Google Scholar 

  • Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al. (2008). Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10: 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Arai Y, Harada H, Shima Y, Yoshida H, Rokudai S et al. (2007). Mutations of the HIPK2 gene in acute myeloid leukemia and myelodysplastic syndrome impair AML1- and p53-mediated transcription. Oncogene 26: 7231–7239.

    Article  CAS  PubMed  Google Scholar 

  • Link N, Chen P, Lu WJ, Pogue K, Chuong A, Mata M et al. (2007). A collective form of cell death requires homeodomain interacting protein kinase. J Cell Biol 178: 567–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maul GG, Negorev D, Bell P, Ishov AM . (2000). Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 129: 278–287.

    Article  CAS  PubMed  Google Scholar 

  • Moller A, Sirma H, Hofmann TG, Rueffer S, Klimczak E, Droge W et al. (2003). PML is required for homeodomain-interacting protein kinase 2 (HIPK2)-mediated p53 phosphorylation and cell cycle arrest but is dispensable for the formation of HIPK domains. Cancer Res 63: 4310–4314.

    PubMed  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS . (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551–3567.

    Article  CAS  PubMed  Google Scholar 

  • Reineke EL, Lam M, Liu Q, Liu Y, Stanya KJ, Chang KS et al. (2008). Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 28: 997–1006.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo C, Prodosmo A, Siepi F, Soddu S . (2007). HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 85: 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Roscic A, Moller A, Calzado MA, Renner F, Wimmer VC, Gresko E et al. (2006). Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2. Mol Cell 24: 77–89.

    Article  CAS  PubMed  Google Scholar 

  • Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B et al. (2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126: 269–283.

    Article  CAS  PubMed  Google Scholar 

  • Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP . (2006). The mechanisms of PML-nuclear body formation. Mol Cell 24: 331–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagata Y, Yoshida H, Nguyen LA, Kato H, Ichikawa H, Tashiro F et al. (2008). Phosphorylation of PML is essential for activation of C/EBP epsilon and PU.1 to accelerate granulocytic differentiation. Leukemia 22: 273–280.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Lallemand-Breitenbach V, Zhu J, de The H . (2004). PML nuclear bodies and apoptosis. Oncogene 23: 2819–2824.

    Article  CAS  PubMed  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG et al. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538–546.

    Article  CAS  PubMed  Google Scholar 

  • Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E et al. (2007). Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11: 513–525.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Chen Z . (2008). Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111: 2505–2515.

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Ku S, Ma GK, Saito S, Tang AA, Zhang J et al. (2007). HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proc Natl Acad Sci USA 104: 13040–13045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Kuo C, Bisi JE, Kim MK . (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4: 865–870.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Giannino Del Sal (Trieste, Italy) and Myung K Kim (NIH, USA) for generously providing expression vectors. The study from our laboratory was supported by grants from the Deutsche Forschungsgemeinschaft projects SCHM 1417/4-1, SCHM 1417/5-1, SFB 547 and the ECCPS—Excellence Cluster Cardio-Pulmonary System. FMI is a part of Novartis Research Foundation and EG was supported by the Swiss Cancer League Grant OCS 01667-02-2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Schmitz.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gresko, E., Ritterhoff, S., Sevilla-Perez, J. et al. PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene 28, 698–708 (2009). https://doi.org/10.1038/onc.2008.420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.420

Keywords

This article is cited by

Search

Quick links