Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proteasome-mediated degradation of Tob is pivotal for triggering UV-induced apoptosis

Abstract

Eukaryotic cells respond to genotoxic stress by inducing cell growth arrest or apoptosis. Although the p53 tumor suppressor largely contributes to the response by regulating antiproliferative or pro-apoptotic genes, some genotoxic stresses including ultraviolet (UV) light induce apoptosis even in the absence of p53. The molecular mechanisms by which cells respond to UV in the p53-independent manner remain to be established. Here, we show that UV-induced stress promotes proteasome-dependent degradation of Tob, triggering an apoptotic signal. We found that Tob with either short deletion or a tag sequence at the C terminus was resistant to UV-induced degradation. Introduction of the degradation-resistant Tob impaired UV-induced apoptosis. Reciprocally, suppression of Tob by small interfering RNA (siRNA) resulted in frequent induction of apoptosis irrespective of the presence of functional p53 even at UV doses that do not promote Tob degradation. Finally, tob-deficient (tob−/−) mice and primary embryonic fibroblasts (MEFs) from tob−/− mice exhibit increased sensitivity to UV irradiation. Thus, proteasomal clearance of Tob provides a novel p53-independent pathway for UV-induced apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bendjennat M, Boulaire J, Jascur T, Brickner H, Barbier V, Sarasin A et al. (2003). UV irradiation triggers ubiquitin-dependent degradation of p21WAF1 to promote DNA repair. Cell 273: 599–610.

    Article  Google Scholar 

  • Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkuv AV . (2006). A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 20: 236–252.

    Article  CAS  Google Scholar 

  • Dornetshuber R, Heffeter P, Kamyar MR, Peterbauer T, Berger W, Lemmens-Gruber R . (2007). Enniatin exerts p53-dependent cytostatic and p53-independent cytotoxic activities against human cancer cells. Chem Res Toxicol 20: 465–473.

    Article  CAS  Google Scholar 

  • El-Mahdy MA, Hamada FM, Wani MA, Zhu Q, Wani AA . (2000). P53-degradation by HPV-16 E6 preferentially affects the removal of cyclobutane pyrimidine dimmers from non-transcribed strand and sensitizes mammary epithelial cells to UV-irradiation. Mut Res 459: 135–145.

    Article  CAS  Google Scholar 

  • Guardavaccaro D, Corrente G, Covone F, Micheli L, D'Agnano I, Starace G et al. (2000). Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 20: 1797–1815.

    Article  CAS  Google Scholar 

  • Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352.

    Article  CAS  Google Scholar 

  • Hiramatsu Y, Kitagawa K, Suzuki T, Uchida C, Hattori T, Kikuchi H et al. (2006). Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination. Cancer Res 66: 8477–8483.

    Article  CAS  Google Scholar 

  • Kondo T, Kobayashi M, Tanaka J, Yokoyama A, Suzuki S, Kato N et al. (2004). Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCFskp2 complex. J Biol Chem 279: 27315–27319.

    Article  CAS  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H et al. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94: 325–337.

    Article  CAS  Google Scholar 

  • Lackinger D, Kaina B . (2000). Primary mouse fibroblasts deficient for c-Fos, p53 or both proteins are hypersensitive to UV light and alkylating agent-induced chromosomal breakage and apoptosis. Mut Res 457: 113–123.

    Article  CAS  Google Scholar 

  • Latonen L, Laiho M . (2006). Cellular UV damage responses-functions of tumor suppressor p53. Biochim Biophys Acta 1755: 71–89.

    Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479–489.

    Article  CAS  Google Scholar 

  • McKay BC, Becerril C, Ljungman M . (2001). P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts. Oncogene 20: 6805–6808.

    Article  CAS  Google Scholar 

  • Matsuda S, Tsuzuku J, Ohsugi M, Yoshida M, Emi M, Nakamura Y et al. (1996). Tob, a novel protein that interacts with p185ErbB2, is associated with anti-proliferative activity. Oncogene 12: 705–713.

    CAS  PubMed  Google Scholar 

  • Naik E, Michalak EM, Villunger A, Adams JM, Strasser A . (2008). Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J Cell Biol 176: 415–424.

    Article  Google Scholar 

  • Norbury CJ, Zhivotovsky B . (2004). DNA damage-induced apoptosis. Oncogene 23: 2797–2808.

    Article  CAS  Google Scholar 

  • Ratner JN, Balasubramanian B, Corden J, Warren SL, Bregman DB . (1998). Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. J Biol Chem 273: 5184–5189.

    Article  CAS  Google Scholar 

  • Rouault JP, Falette N, Guehenneux F, Rimokh R, Wang Q, Berthet C et al. (1996). Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 14: 482–486.

    Article  CAS  Google Scholar 

  • Saldeen J, Tillmar L, Karlsson E, Welsh N . (2003). Nicotinamine- and caspase mediated inhibition of poly(ADP-ribose) polymerase are associated with p53-independent cell cycle (G2) arrest and apoptosis. Mol Cell Biochem 243: 113–122.

    Article  CAS  Google Scholar 

  • Sasajima H, Nakagawa K, Yokosawa H . (2002). Antiproliferative proteins of the BTG/Tob family are degraded by the ubiquitin-proteasome system. Eur J Biochem 269: 3596–3604.

    Article  CAS  Google Scholar 

  • Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR et al. (2000). P53-mediated DNA repair responces to UV radiation: studies of mouse cells lacking p53, p21 and/or gadd45 genes. Mol Cell Biol 20: 3705–3714.

    Article  CAS  Google Scholar 

  • Suzuki T, Tsuzuku J, Ajima R, Nakamura T, Yoshida Y, Yamamoto T . (2002). Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev 16: 1357–1370.

    CAS  Google Scholar 

  • Tirone F . (2001). The gene PC3/TIS21/BTG2, prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol 187: 155–165.

    Article  CAS  Google Scholar 

  • Tomicic MT, Christmann M, Kaina B . (2005). Apoptosis in UV-C light irradiated p53 wild-type, apaf-1 and p53 knockout mouse embryonic fibroblasts: Interplay of receptor and mitochondrial pathway. Apoptosis 10: 1295–1304.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Wang S-Y, Iordanov M, Zhang Q . (2006). c-Jun NH2-terminal kinase promotes apoptosis by down-regulating the transcriptional co-repressor CtBP. J Biol Chem 281: 34810–34815.

    Article  CAS  Google Scholar 

  • Wang X . (2001). The expanding role of the mitochondria in apoptosis. Genes Dev 15: 2922–2933.

    CAS  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindstein T, Panoutsakopoulou V, Ross AJ et al. (2001). Proapoptotic BAX and BAK; a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.

    Article  CAS  Google Scholar 

  • Woo M, Hakem R, Soengas MS, Duncan DS, Shahinian A, Kagi D et al. (1998). Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12: 806–819.

    Article  CAS  Google Scholar 

  • Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R et al. (1998). Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739–750.

    Article  CAS  Google Scholar 

  • Yoshida Y, Nakamura T, Komoda M, Satoh H, Suzuki T, Tsuzuku J et al. (2003). Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev 17: 1201–1206.

    Article  CAS  Google Scholar 

  • Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N et al. (2000). Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103: 1085–1097.

    Article  CAS  Google Scholar 

  • Zhao Y, Hamza MS, Leong HS, Lim C-B, Pan Y-F, Cheung E et al. (2008). Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene 27: 1–8.

    Article  Google Scholar 

  • Zhang Q, Yoshimatsu Y, Hildebrand J, Frish SM, Goodman RH . (2003). Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 115: 177–186.

    Article  CAS  Google Scholar 

  • Zhou BS, Elledge SJ . (2000). The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.

    Article  CAS  Google Scholar 

  • Zong WX, Lindstein T, Ross AJ, MacGregor GR, Thompson CB . (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15: 1481–1486.

    Article  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X . (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Seiji Takeuchi (University of Fukui, Japan) for technical advice about UV irradiation of animals, and Dr Robert Whittier (Institute of Medical Science, Tokyo, Japan) and Dr Marius Sudol (Weis Center for Research, Danville, PA, USA) for comments on the paper. We also thank members of our laboratory for scientific comments and valuable discussions. This study was supported by a grant for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Yamamoto.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Tsuzuku, J., Kawakami, K. et al. Proteasome-mediated degradation of Tob is pivotal for triggering UV-induced apoptosis. Oncogene 28, 401–411 (2009). https://doi.org/10.1038/onc.2008.387

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.387

Keywords

This article is cited by

Search

Quick links