Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cisplatin treatment increases survival and expansion of a highly tumorigenic side-population fraction by upregulating VEGF/Flt1 autocrine signaling

Abstract

The cellular and molecular mechanisms of tumor progression following chemotherapy are largely unknown. Here, we demonstrate that cisplatin (CDDP) treatment upregulates VEGF and Flt1 expression leading to the survival and expansion of a highly tumorigenic fraction of side-population (SP) cells in osteosarcoma (HOS), neuroblastoma (SK-N-BE2) and rhabdomyosarcoma (RH-4) cell lines. In all three lines, we show that CDDP treatment increases levels of VEGF and Flt1 expression, and induces enhanced clonogenic capacity and increased expression of the ‘stemness’-associated genes Nanog, Bmi-1 and Oct-4 in the SP fraction. In HOS, these changes are associated with the transformation of a non-tumorigenic osteosarcoma SP fraction to a highly tumorigenic phenotype. Inhibition of Flt1 led to complete reduction of tumorigenicity in the HOS SP fraction, and reduction of clonogenic capacity and expression of stemness genes in the SK-N-BE(2) and RH-4 SP fractions. Treatment with U0126, a specific inhibitor of MAPK/ERK1,2 completely downregulates CDDP-induced VEGF and Flt1 expression and induction/expansion of SP fraction in all three cell lines, indicating that these effects are mediated through MAPK/ERK1,2 signaling. In conclusion, we report a novel mechanism of CDDP-induced tumor progression, whereby the activation of VEGF/Flt1 autocrine signaling leads to the survival and expansion of a highly tumorigenic SP fraction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P et al. (2003). Flt-1-dependent survival characterizes the epithelial–mesenchymal transition of colonic organoids. Curr Biol 13: 1721–1727.

    Article  CAS  Google Scholar 

  • Behrends M, Schulz R, Post H, Alexandrov A, Belosjorow S, Michel MC et al. (2000). Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol Heart Circ Physiol 279: H1111–H1119.

    Article  CAS  Google Scholar 

  • Bellamy WT, Richter L, Sirjani D, Roxas C, Glinsmann-Gibson B, Frutiger Y et al. (2001). Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97: 1427–1434.

    Article  CAS  Google Scholar 

  • Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL et al. (2007). Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117: 1305–1313.

    Article  CAS  Google Scholar 

  • Brozovic A, Osmak M . (2007). Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett 251: 1–16.

    Article  CAS  Google Scholar 

  • Cara S, Tannock IF . (2001). Retreatment of patients with the same chemotherapy: implications for clinical mechanisms of drug resistance. Ann Oncol 12: 23–27.

    Article  CAS  Google Scholar 

  • Cole S, Tannock IF . (2004). Drug Resistance, 4th edn. McGraw-Hill: Toronto, 390 pp.

    Google Scholar 

  • Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D et al. (2003). Stem cell mobilization. Hematology Am Soc Hematol Educ Program, 419–437.

    Article  Google Scholar 

  • Das B, Tsuchida R, Malkin D, Baruchel S, Yeger H . (2007). Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side-population fraction. Stem Cells (under review).

  • Das B, Yeger H, Baruchel H, Freedman M, Koren G, Baruchel S . (2003). In vitro cytoprotective activity of squalene on a bone marrow versus neuroblastoma model of cisplatin-induced toxicity. Implications in cancer chemotherapy. Eur J Cancer 39: 2556–2565.

    Article  CAS  Google Scholar 

  • Das B, Yeger H, Tsuchida R, Torkin R, Gee MF, Thorner PS et al. (2005). A hypoxia-driven vascular endothelial growth factor/Flt1 autocrine loop interacts with hypoxia-inducible factor-1alpha through mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathway in neuroblastoma. Cancer Res 65: 7267–7275.

    Article  CAS  Google Scholar 

  • Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W et al. (2000). Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106: 511–521.

    Article  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J . (2003). The biology of VEGF and its receptors. Nat Med 9: 669–676.

    Article  CAS  Google Scholar 

  • Folkman J . (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186.

    Article  CAS  Google Scholar 

  • Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715–725.

    Article  CAS  Google Scholar 

  • Gasparini G, Harris AL . (1995). Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool. J Clin Oncol 13: 765–782.

    Article  CAS  Google Scholar 

  • Gee MF, Tsuchida R, Eichler-Jonsson C, Das B, Baruchel S, Malkin D . (2005). Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene 24: 8025–8037.

    Article  CAS  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK . (2005). A distinct ‘side population’ of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 4: 203–205.

    Article  CAS  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U et al. (2004). A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101: 14228–14233.

    Article  CAS  Google Scholar 

  • Ho MM, Ng AV, Lam S, Hung JY . (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67: 4827–4833.

    Article  CAS  Google Scholar 

  • Kim JJ, Tannock IF . (2005). Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5: 516–525.

    Article  CAS  Google Scholar 

  • Kondo T, Setoguchi T, Taga T . (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101: 781–786.

    Article  CAS  Google Scholar 

  • Lin X, Costa M . (1994). Transformation of human osteoblasts to anchorage-independent growth by insoluble nickel particles. Environ Health Perspect 102 (Suppl 3): 289–292.

    Article  CAS  Google Scholar 

  • McAllister RM, Gardner MB, Greene AE, Bradt C, Nichols WW, Landing BH . (1971). Cultivation in vitro of cells derived from a human osteosarcoma. Cancer 27: 397–402.

    Article  CAS  Google Scholar 

  • Mercurio AM, Bachelder RE, Bates RC, Chung J . (2004). Autocrine signaling in carcinoma: VEGF and the alpha6beta4 integrin. Semin Cancer Biol 14: 115–122.

    Article  CAS  Google Scholar 

  • Miller AC, Blakely WF, Livengood D, Whittaker T, Xu J, Ejnik JW et al. (1998). Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride. Environ Health Perspect 106: 465–471.

    Article  CAS  Google Scholar 

  • Miller AC, Mog S, McKinney L, Luo L, Allen J, Xu J et al. (2001). Neoplastic transformation of human osteoblast cells to the tumorigenic phenotype by heavy metal-tungsten alloy particles: induction of genotoxic effects. Carcinogenesis 22: 115–125.

    Article  CAS  Google Scholar 

  • Miura K, Uniyal S, Leabu M, Oravecz T, Chakrabarti S, Morris VL et al. (2005). Chemokine receptor CXCR4-beta1 integrin axis mediates tumorigenesis of osteosarcoma HOS cells. Biochem Cell Biol 83: 36–48.

    Article  CAS  Google Scholar 

  • Montanaro F, Liadaki K, Schienda J, Flint A, Gussoni E, Kunkel LM . (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp Cell Res 298: 144–154.

    Article  CAS  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219.

    Article  CAS  Google Scholar 

  • Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG . (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+{alpha}2{beta}1+ cell population is enriched in tumor-initiating cells. Cancer Res 67: 6796–6805.

    Article  CAS  Google Scholar 

  • Qi L, Robinson WA, Brady BM, Glode LM . (2003). Migration and invasion of human prostate cancer cells is related to expression of VEGF and its receptors. Anticancer Res 23: 3917–3922.

    CAS  PubMed  Google Scholar 

  • Ranganathan AC, Adam AP, Aguirre-Ghiso JA . (2006). Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5: 1799–1807.

    Article  CAS  Google Scholar 

  • Richman CM, Weiner RS, Yankee RA . (1976). Increase in circulating stem cells following chemotherapy in man. Blood 47: 1031–1039.

    CAS  PubMed  Google Scholar 

  • Salnikow K, An WG, Melillo G, Blagosklonny MV, Costa M . (1999). Nickel-induced transformation shifts the balance between HIF-1 and p53 transcription factors. Carcinogenesis 20: 1819–1823.

    Article  CAS  Google Scholar 

  • Setoguchi T, Taga T, Kondo T . (2004). Cancer stem cells persist in many cancer cell lines. Cell Cycle 3: 414–415.

    Article  CAS  Google Scholar 

  • Soker S, Kaefer M, Johnson M, Klagsbrun M, Atala A, Freeman MR . (2001). Vascular endothelial growth factor-mediated autocrine stimulation of prostate tumor cells coincides with progression to a malignant phenotype. Am J Pathol 159: 651–659.

    Article  CAS  Google Scholar 

  • Steiner HH, Karcher S, Mueller MM, Nalbantis E, Kunze S, Herold-Mende C . (2004). Autocrine pathways of the vascular endothelial growth factor (VEGF) in glioblastoma multiforme: clinical relevance of radiation-induced increase of VEGF levels. J Neurooncol 66: 129–138.

    Article  Google Scholar 

  • Strizzi L, Catalano A, Vianale G, Orecchia S, Casalini A, Tassi G et al. (2001). Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 193: 468–475.

    Article  CAS  Google Scholar 

  • Woessmann W, Chen X, Borkhardt A . (2002). Ras-mediated activation of ERK by cisplatin induces cell death independently of p53 in osteosarcoma and neuroblastoma cell lines. Cancer Chemother Pharmacol 50: 397–404.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Cancer Institute of Canada, the Andrew Mizzoni Cancer Research Fund and the Harry and Hannah Fisher Research Fund. RT and BD are supported in part by awards of the Hospital for Sick Children's Research Training Centre and the National Cancer Institute of Canada Fellowship with funds from the Terry Fox Foundation. We thank Dr Meredith Irwin for critical review of the manuscript; Sherry Zhao, Shamim Lotif, Micky Tsui, Reza Mokhtari, Michael Ho, Suzanne McGovern and Ana Novokmet for technical assistance; and the staff of the animal facility of the Hospital for Sick Children for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Malkin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchida, R., Das, B., Yeger, H. et al. Cisplatin treatment increases survival and expansion of a highly tumorigenic side-population fraction by upregulating VEGF/Flt1 autocrine signaling. Oncogene 27, 3923–3934 (2008). https://doi.org/10.1038/onc.2008.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.38

Keywords

This article is cited by

Search

Quick links