Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression

Abstract

The stringent regulation of cell cycle progression helps to maintain genetic stability in cells. MicroRNAs (miRNAs) are critical regulators of gene expression in diverse cellular pathways, including developmental patterning, hematopoietic differentiation and antiviral defense. Here, we show that two c-Myc-regulated miRNAs, miR-17 and miR-20a, govern the transition through G1 in normal diploid human cells. Inhibition of these miRNAs leads to a G1 checkpoint due to an accumulation of DNA double-strand breaks, resulting from premature temporal accumulation of the E2F1 transcription factor. Surprisingly, gross changes in E2F1 levels were not required to initiate the DNA damage response and checkpoint, as these responses could occur with a less than twofold change in E2F1 protein levels. Instead, our findings indicate that the precise timing of E2F1 expression dictates S-phase entry and that accurate timing of E2F1 accumulation requires converging signals from the Rb/E2F pathway and the c-Myc-regulated miR-17 and miR-20a miRNAs to circumvent a G1 checkpoint arising from the untimely accumulation of E2F1. These data provide a mechanistic view of miRNA-based regulation of E2F1 in the context of the emerging model that miRNAs coordinate the timing of cell cycle progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  Google Scholar 

  • DeGregori J, Kowalik T, Nevins JR . (1995). E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Mol Cell Biol 15: 4215–4224.

    Article  CAS  Google Scholar 

  • Dimova DK, Dyson NJ . (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24: 2810–2826.

    Article  CAS  Google Scholar 

  • Dimri GP, Itahana K, Acosta M, Campisi J . (2000). Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol 20: 273–285.

    Article  CAS  Google Scholar 

  • Frame FM, Rogoff HA, Pickering MT, Cress WD, Kowalik TF . (2006). E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts. Oncogene 25: 3258–3266.

    Article  CAS  Google Scholar 

  • Halazonetis TD, Gorgoulis VG, Bartek J . (2008). An oncogene-induced DNA damage model for cancer development. Science 319: 1352–1355.

    Article  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  Google Scholar 

  • Hong S, Paulson QX, Johnson DG . (2008). E2F1 and E2F3 activate ATM through distinct mechanisms to promote E1A-induced apoptosis. Cell Cycle 7: 391–400.

    Article  CAS  Google Scholar 

  • Hutvagner G, Simard MJ, Mello CC, Zamore PD . (2004). Sequence-specific inhibition of small RNA function. PLoS Biol 2: E98.

    Article  Google Scholar 

  • Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM et al. (2008). MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28: 2167–2174.

    Article  CAS  Google Scholar 

  • Lomazzi M, Moroni MC, Jensen MR, Frittoli E, Helin K . (2002). Suppression of the p53- or pRB-mediated G1 checkpoint is required for E2F-induced S-phase entry. Nat Genet 31: 190–194.

    Article  CAS  Google Scholar 

  • Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26: 6099–6105.

    Article  CAS  Google Scholar 

  • Mendell JT . (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell 133: 217–222.

    Article  CAS  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  Google Scholar 

  • Olive PL, Wlodek D, Banath JP . (1991). DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 51: 4671–4676.

    CAS  PubMed  Google Scholar 

  • Olive PL, Wlodek D, Durand RE, Banath JP . (1992). Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp Cell Res 198: 259–267.

    Article  CAS  Google Scholar 

  • Persson H, Gray HE, Godeau F . (1985). Growth-dependent synthesis of c-myc-encoded proteins: early stimulation by serum factors in synchronized mouse 3T3 cells. Mol Cell Biol 5: 2903–2912.

    Article  CAS  Google Scholar 

  • Pickering MT, Kowalik TF . (2006). Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25: 746–755.

    Article  CAS  Google Scholar 

  • Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG . (2004). E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2: 203–214.

    CAS  PubMed  Google Scholar 

  • Rabbitts PH, Watson JV, Lamond A, Forster A, Stinson MA, Evan G et al. (1985). Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J 4: 2009–2015.

    Article  CAS  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM . (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905–916.

    Article  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  CAS  Google Scholar 

  • Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S et al. (2004). Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 24: 2968–2977.

    Article  CAS  Google Scholar 

  • Schultz LB, Chehab NH, Malikzay A, Halazonetis TD . (2000). p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 151: 1381–1390.

    Article  CAS  Google Scholar 

  • Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F et al. (2007). An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282: 2135–2143.

    Article  CAS  Google Scholar 

  • Woods K, Thomson JM, Hammond SM . (2007). Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282: 2130–2134.

    Article  CAS  Google Scholar 

  • Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. (2001). The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414: 457–462.

    Article  CAS  Google Scholar 

  • Yao G, Lee TJ, Mori S, Nevins JR, You L . (2008). A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10: 476–482.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in parts by research grants from the March of Dimes Foundation (6-FY06-344) and the NIH (AI0766189 and 5 P30 DK32520). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T F Kowalik.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickering, M., Stadler, B. & Kowalik, T. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28, 140–145 (2009). https://doi.org/10.1038/onc.2008.372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.372

Keywords

This article is cited by

Search

Quick links