Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor

Abstract

The ephrinA1 ligand exerts antioncogenic effects in tumor cells through activation and downregulation of the EphA2 receptor and has been described as a membrane-anchored protein requiring clustering for function. However, while investigating the ephrinA1/EphA2 system in the pathobiology of glioblastoma multiforme (GBM), we uncovered that ephrinA1 is released from GBM and breast adenocarcinoma cells as a soluble, monomeric protein and is a functional form of the ligand in this state. Conditioned media containing a soluble monomer of ephrinA1 caused EphA2 internalization and downregulation, dramatic alteration of cell morphology and suppression of the Rasā€“MAPK pathway. Moreover, soluble monomeric ephrinA1 was functional in a physiological context, eliciting collapse of embryonic neuronal growth cones. We also found that ephrinA1 is cleaved from the plasma membrane of GBM cells, an event which involves the action of a metalloprotease. Thus, the ephrinA1 ligand can, indeed, function as a soluble monomer and may act in a paracrine manner on the EphA2 receptor without the need for juxtacrine interactions. These findings have important implications for further deciphering the function of these proteins in pathology and physiology, as well as for the design of ephrinA1-based EphA2-targeted antitumor therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aasheim HC, Munthe E, Funderud S, Smeland EB, Beiske K, Logtenberg T . (2000). A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood 95: 221ā€“230.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Beckmann MP, Cerretti DP, Baum P, Vanden Bos T, James L, Farrah T et al. (1994). Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. EMBO J 13: 3757ā€“3762.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J . (2006). Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res 66: 10315ā€“10324.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS . (2002). Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62: 2840ā€“2847.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T . (2003). Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253: 269ā€“285.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cheng N, Brantley DM, Liu H, Lin Q, Enriquez M, Gale N et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 1: 2ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Daniel TO, Stein E, Cerretti DP, St John PL, Robert B, Abrahamson DR . (1996). ELK and LERK-2 in developing kidney and microvascular endothelial assembly. Kidney Int Suppl 57: S73ā€“S81.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T et al. (1994). Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266: 816ā€“819.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Debinski W, Karlsson B, Lindholm L, Siegall CB, Willingham MC, FitzGerald D et al. (1992). Monoclonal antibody C242-Pseudomonas exotoxin A. A specific and potent immunotoxin with antitumor activity on a human colon cancer xenograft in nude mice. J Clin Invest 90: 405ā€“411.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, Bonhoeffer F . (1995). In vitro guidance of retinal ganglion cell axons by RAGS, a 25ā€‰kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82: 359ā€“370.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . (2004a). EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 23: 1448ā€“1456.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . (2004b). Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem Biophys Res Commun 320: 1096ā€“1102.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferguson MA, Williams AF . (1988). Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem 57: 285ā€“320.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Guo H, Miao H, Gerber L, Singh J, Denning MF, Gilliam AC et al. (2006). Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 66: 7050ā€“7058.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hattori M, Osterfield M, Flanagan JG . (2000). Regulated cleavage of a contact-mediated axon repellent. Science 289: 1360ā€“1365.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Higashiyama S, Nanba D . (2005). ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim Biophys Acta 1751: 110ā€“117.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD et al. (2004). Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7: 501ā€“509.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB . (2001). Crystal structure of an Eph receptor-ephrin complex. Nature 414: 933ā€“938.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hoelzinger DB, Demuth T, Berens ME . (2007). Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99: 1583ā€“1593.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Holzman LB, Marks RM, Dixit VM . (1990). A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol Cell Biol 10: 5830ā€“5838.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huovila AP, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM . (2005). Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30: 413ā€“422.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kinch MS, Carles-Kinch K . (2003). Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis 20: 59ā€“68.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Knoll B, Drescher U . (2002). Ephrin-As as receptors in topographic projections. Trends Neurosci 25: 145ā€“149.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Koolpe M, Dail M, Pasquale EB . (2002). An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem 277: 46974ā€“46979.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kullander K, Klein R . (2002). Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3: 475ā€“486.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lee DC, Sunnarborg SW, Hinkle CL, Myers TJ, Stevenson MY, Russell WE et al. (2003). TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann N Y Acad Sci 995: 22ā€“38.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C et al. (2005). A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8: 111ā€“118.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Marquardt T, Shirasaki R, Ghosh S, Andrews SE, Carter N, Hunter T et al. (2005). Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 121: 127ā€“139.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McBride JL, Ruiz JC . (1998). Ephrin-A1 is expressed at sites of vascular development in the mouse. Mech Dev 77: 201ā€“204.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Meima L, Kljavin IJ, Moran P, Shih A, Winslow JW, Caras IW . (1997). AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton. Eur J Neurosci 9: 177ā€“188.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Miao H, Burnett E, Kinch M, Simon E, Wang B . (2000). Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2: 62ā€“69.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR et al. (2001). Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3: 527ā€“530.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nakamoto M, Cheng HJ, Friedman GC, McLaughlin T, Hansen MJ, Yoon CH et al. (1996). Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86: 755ā€“766.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS et al. (2004). Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther 11: 757ā€“766.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB . (2000). The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19: 6043ā€“6052.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pandey A, Shao H, Marks RM, Polverini PJ, Dixit VM . (1995). Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science 268: 567ā€“569.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pasquale EB . (2005). Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6: 462ā€“475.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rashid T, Upton AL, Blentic A, Ciossek T, Knoll B, Thompson ID et al. (2005). Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron 47: 57ā€“69.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sanderson MP, Dempsey PJ, Dunbar AJ . (2006). Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24: 121ā€“136.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shao H, Pandey A, Oā€™Shea KS, Seldin M, Dixit VM . (1995). Characterization of B61, the ligand for the Eck receptor protein-tyrosine kinase. J Biol Chem 270: 5636ā€“5641.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL et al. (1998). Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 12: 667ā€“678.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sweeney P, Karashima T, Kim SJ, Kedar D, Mian B, Huang S et al. (2002). Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 production. Clin Cancer Res 8: 2714ā€“2724.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN et al. (2004). EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10: 5145ā€“5150.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Toth J, Cutforth T, Gelinas AD, Bethoney KA, Bard J, Harrison CJ . (2001). Crystal structure of an ephrin ectodomain. Dev Cell 1: 83ā€“92.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Turner CP, Pulciani D, Rivkees SA . (2002). Reduction in intracellular calcium levels induces injury in developing neurons. Exp Neurol 178: 21ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • VanMeter TE, Rooprai HK, Kibble MM, Fillmore HL, Broaddus WC, Pilkington GJ . (2001). The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol 53: 213ā€“235.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Walker-Daniels J, Coffman K, Azimi M, Rhim JS, Bostwick DG, Snyder P et al. (1999). Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 41: 275ā€“280.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Walker-Daniels J, Riese DJ, Kinch MS . (2002). c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res 1: 79ā€“87.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang HU, Chen ZF, Anderson DJ . (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93: 741ā€“753.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM . (2004). Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 10: 26ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wykosky J, Gibo DM, Debinski W . (2007). A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor expressing tumor cells. Mol Cancer Ther 6: 3208ā€“3218.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wykosky J, Gibo DM, Stanton C, Debinski W . (2005). EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3: 541ā€“551.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xu Q, Wilkinson DG . (1997). Eph-related receptors and their ligands: mediators of contact dependent cell interactions. J Mol Med 75: 576ā€“586.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS . (2001). EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61: 2301ā€“2306.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zeng G, Hu Z, Kinch MS, Pan CX, Flockhart DA, Kao C et al. (2003). High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am J Pathol 163: 2271ā€“2276.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang A, Meng L, Wang Q, Xi L, Chen G, Wang S et al. (2006). Enhanced in vitro invasiveness of ovarian cancer cells through up-regulation of VEGF and induction of MMP-2. Oncol Rep 15: 831ā€“836.

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF et al. (1998). Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer 75: 780ā€“786.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

This study was supported by the NIH Grant 1 F31 NSO55533-01 to JW, NIH Grant 5 T32 CA113267-04 to Dr Mike Robbins (EP) and Brain Tumor Center of Excellence at Wake Forest University School of Medicine. We thank Dr Hannah Caldas and Ms Amanda Beauchamp for help with real-time PCR and Ms Carla Lema-Tome for preparing cortical neurons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Debinski.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wykosky, J., Palma, E., Gibo, D. et al. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 27, 7260ā€“7273 (2008). https://doi.org/10.1038/onc.2008.328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.328

Keywords

This article is cited by

Search

Quick links