Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PCAF is an HIF-1α cofactor that regulates p53 transcriptional activity in hypoxia

Abstract

The p53 tumour suppressor is involved in several crucial cellular functions including cell-cycle arrest and apoptosis. p53 stabilization occurs under hypoxic and DNA damage conditions. However, only in the latter scenario is stabilized p53 capable of inducing the expression of its pro-apoptotic targets. Here we present evidence that under hypoxia-mimicking conditions p53 acetylation is reduced to a greater extent at K320 site targeted by P300/CBP-associated factor (PCAF) than at K382 site targeted by p300/CBP. The limited amounts of acetylated p53 at K320 are preferentially recruited to the promoter of the p21WAF-1/CIP-1 gene, which appears to be unaffected by hypoxia, but are not recruited to the BID promoter and hence p53 is incapable of upregulating pro-apoptotic BID in hypoxic conditions. As the K320 p53 acetylation is the site predominantly affected in hypoxia, the PCAF histone acetyltransferase activity is the key regulator of the cellular fate modulated by p53 under these conditions. In addition, we provide evidence that PCAF acetylates hypoxia-inducible factor-1α (HIF-1α) in hypoxic conditions and that the acetylated HIF-1α is recruited to a particular subset of its targets. In conclusion, PCAF regulates the balance between cell-cycle arrest and apoptosis in hypoxia by modulating the activity and protein stability of both p53 and HIF-1α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM . (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392: 405–408.

    Article  CAS  PubMed  Google Scholar 

  • Achison M, Hupp TP . (2003). Hypoxia attenuates the p53 response to cellular damage. Oncogene 22: 3431–3440.

    Article  CAS  PubMed  Google Scholar 

  • Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA et al. (1996). An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93: 12969–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilton R, Trottier E, Pouyssegur J, Brahimi-Horn MC . (2006). ARDent about acetylation and deacetylation in hypoxia signalling. Trends Cell Biol 16: 616–621.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L . (1998). p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273: 11995–11998.

    Article  CAS  PubMed  Google Scholar 

  • Brahimi-Horn C, Mazure N, Pouysségur J . (2005). Signalling via the hypoxia-inducible factor-1α requires multiple posttranslational modifications. Cell Signalling 17: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T et al. (2006). Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 26: 6859–6869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Li M, Luo J, Gu W . (2003). Direct interactions between HIF-1α and Mdm2 modulate p53 function. J Biol Chem 278: 13595–13598.

    Article  CAS  PubMed  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al. (2004). Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13: 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Huang DCS, Adams JM . (2003). The Bcl-2 family: roles in cell cycle survival and oncogenesis. Oncogene 22: 8590–8607.

    Article  CAS  PubMed  Google Scholar 

  • Demonacos C, Krstic-Demonacos M, La Thangue NB . (2001). A novel TPR-motif co-factor contributes to p300 activity in the p53 response. Mol Cell 8: 71–84.

    Article  CAS  PubMed  Google Scholar 

  • Demonacos C, Krstic-Demonacos M, Smith L, Xu D, O'Connor DP, Jansson M et al. (2004). A new effector pathway links ATM kinase with the DNA damage response. Nat Cell Biol 6: 968–976.

    Article  CAS  PubMed  Google Scholar 

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Erler JT, Cawthorne CJ, Williams KJ, Koritzinksy M, Wouters B, Wilson C et al. (2004). Hypoxia mediated down regulation of Bid and Bax in tumours occurs via HIF-1 dependent and independent mechanisms and contributes to drug resistance. Mol Cell Biol 24: 2875–2889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei P, Wang W, Kim S, Wang S, Burns TF, Sax JK et al. (2004). Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 6: 597–609.

    Article  CAS  PubMed  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman SJ, Sun Z-YJ, Kung AL, France DS, Wagner G, Eck MJ . (2004). Structural basis for negative regulation of hypoxia-inducible factor-1α by CITED2. Nat Struct Biol 10: 504–512.

    Article  Google Scholar 

  • Freedman SJ, Sun Z-YJ, Poy F, Kung AL, Livingston DM, Wagner G et al. (2002). Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1α. Proc Natl Acad Sci USA 99: 5367–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda N, Dozier S, Johnson RS . (2003). HIF-1 in cell cycle regulation, apoptosis, and tumor progression. Antioxid Redox Signal 5: 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Gordan JD, Bertout JA, Hu C-J, Diehl JA, Simon MC . (2007). HIF-2a promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11: 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greijer AE, van der Wall E . (2004). The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57: 1009–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond EM, Giaccia AJ . (2005). The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Comm 331: 718–725.

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM, Mandell DJ, Salim A, Krieg AJ, Johnson TM, Shirazi HA et al. (2006). Genome-wide analysis of p53 under hypoxic conditions. Mol Cell Biol 26: 3492–3504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson LO, Friedler A, Freund S, Rudiger S, Fersht AR . (2002). Two sequence motifs from HIF-1α bind to the DNA-binding site of p53. Proc Natl Acad Sci USA 99: 10305–10309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC . (2003). Differential roles of hypoxia inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23: 9361–9374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J-W, Bae M-K, Ahn M-Y, Kim S-H, Sohn T-K, Bae M-H et al. (2002). Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell 111: 709–720.

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Zeng SX, Dai M-S, Yang X-J, Lu H . (2002). MDM2 Inhibits PCAF-mediated p53 acetylation. J Biol Chem 277: 30838–30843.

    Article  CAS  PubMed  Google Scholar 

  • Kaelin Jr WG . (2005). Proline hydroxylation and gene expression. Annu Rev Biochem 74: 115–128.

    Article  CAS  PubMed  Google Scholar 

  • Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J et al. (2005). Two transactivation mechanisms cooperate for the bulk of HIF-1 responsive gene expression. EMBO J 24: 3846–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knights CD, Catania J, Di Giovani S, Muratoglu S, Perez R, Swartzbeck A et al. (2006). Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173: 533–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M et al. (2001). Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21: 1297–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML . (2002). Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295: 858–861.

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Kong X, Sang N . (2006). Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle 5: 2430–2435.

    Article  CAS  PubMed  Google Scholar 

  • Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O et al. (2007). Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 9: 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W . (2004). Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101: 2259–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL . (2001). FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Ogrysko PR, Arsham AM, Koch CJ, Simon MC . (2004). p53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23: 4975–4983.

    Article  CAS  PubMed  Google Scholar 

  • Pescador N, Cuervas Y, Naranjo S, Alcaide M, Villar D, Landazuri MD et al. (2005). Identification of a functional hypoxia-responsive element that regulates the expression of egl nine homologue 3 (egln/phd3) gene. Biochem J 390: 189–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poux AN, Marmorstein R . (2003). Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and non-histone substrates. Biochemistry 42: 14366–14372.

    Article  CAS  PubMed  Google Scholar 

  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev 14: 34–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von-Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25: 5675–5686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Packman K, Jeffrey R, Tenniswood M . (2005). Histone deacetylase inhibitors differentially stabilise acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Diff 12: 482–491.

    Article  CAS  Google Scholar 

  • Roy S, Tenniswood M . (2007). Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem 282: 4765–4771.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi KJ, Herrera S, Saito T, Miki M, Bustin A, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12: 2831–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS . (2002). BID regulation by ER contributes to chemosensitivity. Nat Cell Biol 4: 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Schmid T, Zhou J, Köhl R, Brüne B . (2004). p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HIF-1). Biochem J 380: 289–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL, Jiang B-H, Leung SW, Passantino R, Concordet J-P, Maire P et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271: 32529–32537.

    Article  CAS  PubMed  Google Scholar 

  • Tyteca S, Legube G, Trouche D . (2006). To die or not to die: A HAT trick. Mol Cell 24: 807–812.

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Harrison L . (2004). Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9 (Suppl 5): 4–9.

    Article  PubMed  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C . (2005). p53 and prognosis; new insights and further complexity. Cell 120: 7–10.

    CAS  PubMed  Google Scholar 

  • Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M et al. (2004). Differentiating the functional role of hypoxia-inducible factor (HIF)-1a and HIF-2a (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J 18: 1462–1464.

    Article  CAS  PubMed  Google Scholar 

  • Wenger RH . (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16: 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  • Wykoff CC, Beasley NJP, Watson PH, Turner KJ, Pastorek J, Sibtain A et al. (2000). Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60: 7075–7083.

    CAS  PubMed  Google Scholar 

  • You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al. (2006). FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med 203: 1657–1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Mao XO, Sun Y, Xia Z, Greenberg DA . (2002). p38 mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons. J Biol Chem 277: 22909–22914.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W El-Deiry for providing the BID-p53-Luc reporter construct; I Talianidis for the Flag-PCAF and Flag-PCAF-ΔHAT constructs; T Halazonetis for the p53K320R expression vector; K Williams for the HIF-1α-responsive reporters of VEGF-Luc, CA-IX-Luc, PGK-1-Luc and LDH-A-Luc; M Blaylock and the Paterson Institute for Cancer Research for assistance with FACS analysis. Our research was supported by the School of Pharmacy, University of Manchester (CD), Cancer Research UK (CDive), MRC programme grant (G0500366) to IJS and Wellcome Trust (069024) to MKD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Demonacos.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xenaki, G., Ontikatze, T., Rajendran, R. et al. PCAF is an HIF-1α cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 27, 5785–5796 (2008). https://doi.org/10.1038/onc.2008.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.192

Keywords

This article is cited by

Search

Quick links