Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma

Abstract

A comprehensive microarray analysis of hepatocellular carcinoma (HCC) revealed distinct synexpression patterns during intrahepatic metastasis. Recent evidence has demonstrated that synexpression group member genes are likely to be regulated by master control gene(s). Here we investigate the functions and gene regulation of the transcription factor SOX4 in intrahepatic metastatic HCC. SOX4 is important in tumor metastasis as RNAi knockdown reduces tumor cell migration, invasion, in vivo tumorigenesis and metastasis. A multifaceted approach integrating gene profiling, binding site computation and empirical verification by chromatin immunoprecipitation and gene ablation refined the consensus SOX4 binding motif and identified 32 binding loci in 31 genes with high confidence. RNAi knockdown of two SOX4 target genes, neuropilin 1 and semaphorin 3C, drastically reduced cell migration activity in HCC cell lines suggesting that SOX4 exerts some of its action via regulation of these two downstream targets. The discovery of 31 previously unidentified targets expands our knowledge of how SOX4 modulates HCC progression and implies a range of novel SOX4 functions. This integrated approach sets a paradigm whereby a subset of member genes from a synexpression group can be regulated by one master control gene and this is exemplified by SOX4 and advanced HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aaboe M, Birkenkamp-Demtroder K, Wiuf C, Sorensen FB, Thykjaer T, Sauter G et al. (2006). SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 66: 3434–3442.

    Article  CAS  PubMed  Google Scholar 

  • Attia MA, Weiss DW . (1966). Immunology of spontaneous mammary carcinoma in mice. V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res 26: 1787–1800.

    CAS  PubMed  Google Scholar 

  • Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M . (2006). Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res 312: 584–593.

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, Schepers G, Koopman P . (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227: 239–255.

    Article  CAS  PubMed  Google Scholar 

  • Chau GY, Lee AF, Tsay SH, Ke YR, Kao HL, Wong FH et al. (2007). Clinicopathological significance of survivin expression in patients with hepatocellular carcinoma. Histopathology 51: 204–218.

    Article  PubMed  Google Scholar 

  • Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J et al. (2002). Gene expression patterns in human liver cancers. Mol Biol Cell 13: 1929–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung M, bu-Elmagd M, Clevers H, Scotting PJ . (2000). Roles of Sox4 in central nervous system development. Brain Res Mol Brain Res 79: 180–191.

    Article  CAS  PubMed  Google Scholar 

  • El-Serag HB, Rudolph KL . (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557–2576.

    Article  CAS  PubMed  Google Scholar 

  • Fickett JW, Wasserman WW . (2000). Discovery and modeling of transcriptional regulatory regions. Curr Opin Biotechnol 11: 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Geijsen N, Uings IJ, Pals C, Armstrong J, McKinnon M, Raaijmakers JA et al. (2001). Cytokine-specific transcriptional regulation through an IL-5Ralpha interacting protein. Science 293: 1136–1138.

    Article  CAS  PubMed  Google Scholar 

  • Gonthier B, Nasarre C, Roth L, Perraut M, Thomasset N, Roussel G et al. (2007). Functional interaction between matrix metalloproteinase-3 and semaphorin-3C during cortical axonal growth and guidance. Cereb Cortex 17: 1712–1721.

    Article  CAS  PubMed  Google Scholar 

  • Grizzi F, Franceschini B, Hamrick C, Frezza EE, Cobos E, Chiriva-Internati M . (2007). Usefulness of cancer-testis antigens as biomarkers for the diagnosis and treatment of hepatocellular carcinoma. J Transl Med 5: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan KL, Rao Y . (2003). Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4: 941–956.

    Article  CAS  PubMed  Google Scholar 

  • Hardison RC, Oeltjen J, Miller W . (1997). Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res 7: 959–966.

    Article  CAS  PubMed  Google Scholar 

  • He Z, Tessier-Lavigne M . (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90: 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Meadows GG . (2007). Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. Int J Oncol 30: 1231–1238.

    CAS  PubMed  Google Scholar 

  • Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC et al. (2007). Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 13: 4759–4768.

    Article  CAS  PubMed  Google Scholar 

  • Hunt SM, Clarke CL . (1999). Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues. Biol Reprod 61: 476–481.

    Article  CAS  PubMed  Google Scholar 

  • Hur EH, Hur W, Choi JY, Kim IK, Kim HY, Yoon SK et al. (2004). Functional identification of the pro-apoptotic effector domain in human Sox4. Biochem Biophys Res Commun 325: 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Kamachi Y, Uchikawa M, Kondoh H . (2000). Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 16: 182–187.

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  • Karaulanov E, Knochel W, Niehrs C . (2004). Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. EMBO J 23: 844–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Sills RC, Houle CD . (2005). Overview of the molecular biology of hepatocellular neoplasms and hepatoblastomas of the mouse liver. Toxicol Pathol 33: 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Lee YC, Tang YC, Chen YH, Wong CM, Tsou AP . (2003). Selenite-induced survival of HuH7 hepatoma cells involves activation of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt pathway and Rac1. J Biol Chem 278: 39615–39624.

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Ramachandran S, Ali SM, Scharer CD, Laycock N, Dalton WB et al. (2006). Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 66: 4011–4019.

    Article  CAS  PubMed  Google Scholar 

  • Lu YS, Kashida Y, Kulp SK, Wang YC, Wang D, Hung JH et al. (2007). Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology 46: 1119–1130.

    Article  CAS  PubMed  Google Scholar 

  • Maes T, Barcelo A, Buesa C . (2002). Neuron navigator: a human gene family with homology to unc-53, a cell guidance gene from Caenorhabditis elegans. Genomics 80: 21–30.

    Article  CAS  PubMed  Google Scholar 

  • McCracken S, Kim CS, Xu Y, Minden M, Miyamoto NG . (1997). An alternative pathway for expression of p56lck from type I promoter transcripts in colon carcinoma. Oncogene 15: 2929–2937.

    Article  CAS  PubMed  Google Scholar 

  • Mertin S, McDowall SG, Harley VR . (1999). The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res 27: 1359–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JD, Denisenko O, Sova P, Bomsztyk K . (2006). Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34: e2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niehrs C, Pollet N . (1999). Synexpression groups in eukaryotes. Nature 402: 483–487.

    Article  CAS  PubMed  Google Scholar 

  • Paget S . (1889). The distribution of secondary growth in cancer of the breast. Lancet 1: 571–573.

    Article  Google Scholar 

  • Pramoonjago P, Baras AS, Moskaluk CA . (2006). Knockdown of Sox4 expression by RNAi induces apoptosis in ACC3 cells. Oncogene 25: 5626–5639.

    Article  CAS  PubMed  Google Scholar 

  • Remenyi A, Scholer HR, Wilmanns M . (2004). Combinatorial control of gene expression. Nat Struct Mol Biol 11: 812–815.

    Article  CAS  PubMed  Google Scholar 

  • Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, van de WM et al. (1996). Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380: 711–714.

    Article  CAS  PubMed  Google Scholar 

  • Shouval D, Schuger L, Levij IS, Reid LM, Neeman Z, Shafritz DA . (1988). Comparative morphology and tumourigenicity of human hepatocellular carcinoma cell lines in athymic rats and mice. Virchows Arch A Pathol Anat Histopathol 412: 595–606.

    Article  CAS  PubMed  Google Scholar 

  • Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH et al. (2004). A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 130: 187–196.

    Article  PubMed  Google Scholar 

  • Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de WM, Oosterwegel M, van NK, Clevers H . (1993). Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 12: 3847–3854.

    Article  Google Scholar 

  • Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE . (2000). Human-mouse genome comparisons to locate regulatory sites. Nat Genet 26: 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Koopman P . (2002). Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12: 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Wotton D, Lake RA, Farr CJ, Owen MJ . (1995). The high mobility group transcription factor, SOX4, transactivates the human CD2 enhancer. J Biol Chem 270: 7515–7522.

    Article  CAS  PubMed  Google Scholar 

  • Ya J, Schilham MW, de Boer PA, Moorman AF, Clevers H, Lamers WH . (1998). Sox4-deficiency syndrome in mice is an animal model for common trunk. Circ Res 83: 986–994.

    Article  CAS  PubMed  Google Scholar 

  • Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC et al. (2003). Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9: 416–423.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical supports provided by the Microarray & Gene Expression Analysis Core Facility of the VGH National Yang-Ming University Genome Research Center (VYMGC). The Gene Expression Analysis Core Facility is supported by National Research Program for Genomic Medicine (NRPGM), National Science Council. RNAi reagents were obtained from the National RNAi Core Facility located at the Institute of Molecular Biology/Genomic Research Center, Academia Sinica (supported by the National Research Program for Genomic Medicine Grants of NSC (NSC 94-3112-B-001-003 and NSC 94-3112-B-001-018-Y). We thank Dr Hua-Chien Chen for providing the PCR primers for the RT-qPCR assays. This work was supported in part by grant (NSC 95-2752-B-010-002-PAE) from National Science Council (Program for Promoting Academic Excellence of Universities Phase II) and a grant from the Ministry of Education, Aim for the Top University Plan to APT and YPC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-T Horng, M Hsiao or A-P Tsou.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, YL., Sun, YM., Chau, GY. et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 27, 5578–5589 (2008). https://doi.org/10.1038/onc.2008.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.168

Keywords

Search

Quick links